Abstract:
Biocompatible mesh materials are employed to make implants for repairing or replacing a bone or for soft tissue repair. The mesh materials can be comprised of bioabsorbable materials, non-bioabsorbable materials or bioabsorbable and non-bioabsorbable materials. Pharmaceutical actives, bone growth enhancers and the like can be combined with the implants.
Abstract:
A bone plate and system is provided. The bone fixation plate conforms to the contour of an irregularly shaped bone and eliminates the need for pre-bending or intraoperative bending of the plate. The bone plate is applied to the bone in a generally flat condition and the process of installing and tightening the bone screws in the prescribed order serves to contour the plate to the underlying bone while providing sufficient strength to effect bone healing. The geometry of the plate allows the plate to follow the contour of an irregularly shaped bone, preventing prominence and patient palpability and streamlining the surgical procedure.
Abstract:
An intervertebral implant includes a first plate having an inner surface, an outer surface, a ball shaped protuberance projecting from the inner surface and an annular groove surrounding the ball shaped protuberance. The implant includes a second plate having an inner surface, an outer surface, a curvate socket formed in the inner surface of the second plate and a raised rim surrounding the curvate socket. The first and second plates are assembled together so that the inner surfaces of the plates oppose one another and the ball shaped protuberance is disposed in the curvate socket and the annular groove aligned with the raised rim. The assembled first and second plates angulate and rotate relative to one another.
Abstract:
An intervertebral spacer device may include first and second plates, each having inner and outer surfaces thereof, the plates may be disposed in a spaced apart relationship such that the inner surfaces face toward one another, and the outer surfaces face away from one another, the first plate including a retaining wall extending outwardly from the inner surface of the first plate; and a belleville washer, having narrow and wide ends thereof, may be disposed with said wide end contacting said inner surface of said first plate within said retaining wall, such that a compressive load applied to the outer surfaces of said plates is counteracted by said belleville washer, said belleville washer including a plurality of radially spaced concentric groove.
Abstract:
Strip fasteners and cranial plugs for use in reattaching a skull flap removed during brain surgery and methods of using the same. The strip fasteners are flexible and can be shaped to follow the perimeter contour of the skull flap. The cranial plugs can be used to reattach the skull flap or they can be installed after the skull flap is reattached using the strip fasteners. In some embodiments, the cranial plug(s) and strip fasteners can be installed at the same time. The strip fasteners and cranial plugs are designed to encourage bone growth and healing of the skull flap and they can be used to deliver medication and bone growth enhancement compositions to the surgical site.
Abstract:
An intervertebral spacer device having a pair of opposing plates for seating against opposing vertebral bone surfaces. Each of the opposing plates has an external surface with a deflectable wire mesh thereon, into which the bone can readily grow.
Abstract:
A polyaxial orthopedic device for use with rod implant apparatus includes a screw having a curvate head, a two-piece interlocking coupling element which mounts about the curvate head, and a rod receiving cylindrical body member having a tapered socket into which both the screw and the interlocking coupling element are securely nested. The interlocking coupling element includes a socket portion which is slotted and tapered so that when it is radially compressed by being driven downwardly into the tapered socket in the cylindrical body it crush locks to the screw. The securing of the rod in the body member provides the necessary downward force onto the socket portion through a contact force on the top of the cap portion. Prior to the rod being inserted, therefore, the screw head remains polyaxially free with respect to the coupling element and the body. In a preferred embodiment, the cap portion and the socket portion are formed and coupled in such a way that when the cap portion is compressed toward the socket portion, there is an additional inward radial force applied by the cap portion to the socket portion, thereby enhancing the total locking force onto the head of the screw.
Abstract:
An intervertebral spacer has curvate upper and lower rough surfaces that stimulate bone growth and is formed from a porous material that facilitates bone growth thereinto. The spacer has a plurality of smooth linear grooves to facilitate insertion of the spacer into an intervertebral space using a spacer insertion tool that has a scissor-style body. Each of the insertion tool's arm's heads has an inner surface having a pair of smoothed linear protrusions that fit within the linear grooves of the spacer when the heads are closed about the spacer. When the spacer is held, spaces are present between the spacer's rough surfaces and the heads' inner surfaces so that when the protrusions are longitudinally slid from the grooves to leave the spacer in the intervertebral spacer, the rough surfaces are not disturbed.
Abstract:
Strip fasteners and cranial plugs for use in reattaching a skull flap removed during brain surgery and methods of using the same. The strip fasteners are flexible and can be shaped to follow the perimeter contour of the skull flap. The cranial plugs can be used to reattach the skull flap or they can be installed after the skull flap is reattached using the strip fasteners. In some embodiments, the cranial plug(s) and strip fasteners can be installed at the same time. The strip fasteners and cranial plugs are designed to encourage bone growth and healing of the skull flap and they can be used to deliver medication and bone growth enhancement compositions to the surgical site.
Abstract:
An intervertebral spacer device may include first and second plates, each having inner and outer surfaces thereof, the plates may be disposed in a spaced apart relationship such that the inner surfaces face toward one another, and the outer surfaces face away from one another, the first plate including a retaining wall extending outwardly from the inner surface of the first plate; and a belleville washer, having narrow and wide ends thereof, may be disposed with said wide end contacting said inner surface of said first plate within said retaining wall, such that a compressive load applied to the outer surfaces of said plates is counteracted by said belleville washer, said belleville washer including a plurality of radially spaced concentric groove; wherein each concentric groove of the plurality of radially spaced concentric grooves in the belleville washer may have a respective length, a respective depth along the respective length, and a respective width along the respective length, at least one of the respective depth and the respective width may be uniform along the respective length; wherein each of the plurality of radially spaced concentric grooves in the belleville washer may be at a respective distance from an outer edge of the belleville washer, wherein the depths may differ with respect to one another depending on the distances, and the widths may differ with respect to one another depending on said distances.