Abstract:
Methods and systems for a vessel preheating system are provided. The system includes a pressure vessel including an area of excess heat and an area of deficient heat, a plenum defined between the area of excess heat and the area of deficient heat, and a conduit configured to couple a flow of purge fluid from external to the vessel into the plenum wherein heat from the area of excess heat is transferred to the flow of purge fluid in the plenum and the heat is carried by the flow of purge fluid into the area of deficient heat such that the flow of purge fluid purges the area of deficient heat.
Abstract:
A system may detect a flame about a fuel nozzle of a gas turbine. The gas turbine may have a compressor and a combustor. The system may include a first pressure sensor, a second pressure sensor, and a transducer. The first pressure sensor may detect a first pressure upstream of the fuel nozzle. The second pressure sensor may detect a second pressure downstream of the fuel nozzle. The transducer may be operable to detect a pressure difference between the first pressure sensor and the second pressure sensor.
Abstract:
In one embodiment, a system is provided, including a plug removal shield. The plug removal shield further includes a tube configured to surround a plug retaining a fluid volume, and a mount configured to hold the tube relative to the plug. The tube includes a port configured to pass a plug removal tool into proximity with the plug.
Abstract:
A pump used in a gasification system, the pump comprises a housing having an inlet and an outlet, a rotor supported within the housing for rotation relative to the housing, the rotor comprising a hub, a plurality of disks spaced apart by sections of the hub, and defining a plurality of transport channels for transporting solid carbonaceous feedstocks for the gasification system, and an interior feedstock facing surface adjacent to the solid carbonaceous feedstocks, wherein at least a portion of the interior feedstock facing surface is coated with a coating.
Abstract:
A heat flux measurement device includes at least two thermocouples disposed within a front portion of the device at different axial distances from a front wall of the device. A correlation between the measured heat fluxes from the device over a period of time is used to estimate a fouling thickness on a wall, for example, a water wall of a radiant syngas cooler (RSC).
Abstract:
A fiber sensor package is disclosed. The fiber sensor package includes an interconnection between a first optical fiber and a second optical fiber within a tubing such that the first and second optical fibers are at least partially disposed within that tubing. A bonding material is disposed across an edge of the interconnection around at least a part of the circumferential surfaces of the first and second fibers, holds rigid the interconnection of the first and second optical fibers. The methods of preparing the package, and the examples of systems benefiting from the fiber sensor package of this invention are also described.
Abstract:
A method and systems for a purged seal for an annular space are provided. The purged seal includes a first baffle element that extends from an inner surface of the annular space into the annular space at an oblique angle and a second baffle element that extends from an outer surface of the annular space above the first baffle element in a direction opposite gravity flow into the annular space wherein the second baffle element extends at an oblique angle. The system also includes a third baffle element that extends from the inner surface above the first baffle element in a direction of gravity flow into the annular space wherein the third baffle element extends into the annular space at an oblique angle with respect to the inner surface and wherein a distal end of the third baffle element is positioned proximate a distal end of the second baffle element.
Abstract:
A fiber sensor package is disclosed. The fiber sensor package includes an interconnection between a first optical fiber and a second optical fiber within a tubing such that the first and second optical fibers are at least partially disposed within that tubing. A bonding material is disposed across an edge of the interconnection around at least a part of the circumferential surfaces of the first and second fibers, holds rigid the interconnection of the first and second optical fibers. The methods of preparing the package, and the examples of systems benefiting from the fiber sensor package of this invention are also described.
Abstract:
A coating for use in combustion systems includes a plurality of refractory metal particles in a ceramic, glass or metal matrix disposed on surfaces of the system that are prone to slag, ash, and/or char buildup during operation of the combustion system. The coating is effective to prevent any substantial interaction with the slag, ash, and/or char.
Abstract:
A method of assembling a synthesis gas (syngas) cooler for a gasification system includes positioning a dip tube within a shell of the syngas cooler. The dip tube is configured to quench the syngas flowing through the shell and/or at least partially channel the syngas through the dip tube. The method also includes coupling an isolation tube to the dip tube such that the isolation tube is substantially concentrically aligned with, and radially outward of, the dip tube. The isolation tube is coupled in flow communication with a purge gas source and is configured to at least partially form a dynamic pressure seal. The method further includes coupling at least one of the isolation tube and the dip tube in fluid communication with a fluid retention chamber. The method also include at least partially filling the fluid retention chamber with fluid, thereby further forming the dynamic pressure seal.