摘要:
In an n-node optical communications system, energy harvesting photodetectors at each node receive extraneous electromagnetic wavelengths that are not used for communication or other purposes by the associated node. The energy harvesting photodetectors convert the unused electromagnetic energy into reusable electrical energy. The harvested electrical energy may be used as auxiliary power at the node or elsewhere in the communication system, or stored in a battery, capacitor, or other energy storage device. The system may be used in an “all-to-all” broadcast and select communication scheme or in some other broadcast and select interconnect system that has extraneous wavelengths at node receivers.
摘要:
The present invention provides an improved method for manufacturing circuit boards with high power, high density interconnects. Printed circuit board technology, integrated circuit technology, and heavy-build electroless plating are combined to produce multilayer circuit boards comprised of substrates with different interconnect densities. In the higher density substrates, thick metallized layers are built-up by combining additive and subtractive technique. These thicker foils minimize DC voltage drop so that conductors can run for longer distances. The conductors are substantially more square than their thin film equivalents, thus providing better performance for high frequency signals. Power distribution capabilities are enhanced by the present invention, so that circuit boards fully populated with dense, high-speed, high-power integrated circuits can easily be supplied with their necessary power requirements.
摘要:
A generic chip carrier is described which includes, as integral parts, a voltage bus and a plurality of terminating resistors connected between the voltage bus and signal traces on the carrier. The voltage bus wraps around the chip carrier, thus providing a large area of metal. Through the selective use of the terminating resistors, the generic carrier can be customized for a particular type of integrated circuit, i.e., source or destination termination of signals. A signal trace may be customized by "operating" the terminating resistor with a current spike applied by a standard electrical probe. Spare bonding pads and terminating resistors are placed at intervals about the periphery of the carrier as insurance against defective or mistakenly removed terminating resistors.
摘要:
A connector assembly for optically coupling a first optical device mounted on a first substrate to a second optical device mounted on a second substrate, where the first and second substrates are orthogonally oriented to each other, is presented. The connector assembly includes two connectors. The first connector has an optical waveguide array. The optical waveguide array further includes multiple parallel optical waveguides that are continuously redirected by a mirror oriented at a 45 degree angle to the optical waveguides. Likewise, the second connector also has an optical waveguide array further include multiple parallel optical waveguides continuously redirected by a mirror oriented at a 45 degree angle to the optical waveguides. The first connector is oriented orthogonally to the second connector and the first and second connectors are optically welded together in a back-to-back configuration.
摘要:
In an n-node optical communications system, energy harvesting photodetectors at each node receive extraneous electromagnetic wavelengths that are not used for communication or other purposes by the associated node. The energy harvesting photodetectors convert the unused electromagnetic energy into reusable electrical energy. The harvested electrical energy may be used as auxiliary power at the node or elsewhere in the communication system, or stored in a battery, capacitor, or other energy storage device. The system may be used in an “all-to-all” broadcast and select communication scheme or in some other broadcast and select interconnect system that has extraneous wavelengths at node receivers.
摘要:
Apparatus and method for determining the electrical length of a signal flow path, such as a twisted-pair conductor, to create conductors of the same electrical length are disclosed. The term electrical length refers to a certain physical distance for a length of conductor for which an electrical signal travels, or propagates along the conductor, in a specified amount of time. The apparatus preferably includes a Time Domain Reflectometer 25 (including pulse generator means 30 and electrical response display means 20) which is cooperatively connected to a first end of a conductor pair 51 under test. The conductor pair 51 is inserted through a ground plane 60 or other impedance changing device. Means to mark or cut 62 the conductor 51 are located within the ground plane 60 or as close as possible to the point at which the impedance is changed. Processing means 40 are utilized to adjust the conductor 51 length relative to the ground plane 60. In operation, the pulse generator means 30 sends a pulse along the conductor 51. The ground plane 60 reflects a portion of the pulse back to the electrical response display means 20 with the signal propagation delay per unit mechanical length being calculated thereby.
摘要:
A connector assembly for optically coupling a first optical device mounted on a first substrate to a second optical device mounted on a second substrate, where the first and second substrates are orthogonally oriented to each other, is presented. The connector assembly includes two connectors. The first connector has an optical waveguide array. The optical waveguide array further includes multiple parallel optical waveguides that are continuously redirected by a mirror oriented at a 45 degree angle to the optical waveguides. Likewise, the second connector also has an optical waveguide array further include multiple parallel optical waveguides continuously redirected by a mirror oriented at a 45 degree angle to the optical waveguides. The first connector is oriented orthogonally to the second connector and the first and second connectors are optically welded together in a back-to-back configuration.
摘要:
The present invention provides an improved method for manufacturing circuit boards with high power, high density interconnects. Printed circuit board technology, integrated circuit technology, and heavy-build electroless plating are combined to produce multilayer circuit boards comprised of substrates with different interconnect densities. In the higher density substrates, thick metallized layers are built-up by combining additive and subtractive techniques. These thicker foils minimize DC voltage drop so that conductors can run for longer distances. The conductors are substantially more square than their thin film equivalents, thus providing better performance for high frequency signals. Power distribution capabilities are enhanced by the present invention, so that circuit boards fully populated with dense, high-speed, high-power integrated circuits can easily be supplied with their necessary power requirements.
摘要:
A generic chip carrier is described which includes, as integral parts, a voltage bus and a plurality of terminating resistors connected between the voltage bus and signal traces on the carrier. The voltage bus wraps around the chip carrier, thus providing a large area of metal. Through the selective use of the terminating resistors, the generic carrier can be customized for a particular type of integrated circuit, i.e., source or destination termination of signals. A signal trace may be customized by "opening" the terminating resistor with a current spike applied by a standard electrical probe. Spare bonding pads and terminating resistors are placed at intervals about the periphery of the carrier as insurance against defective or mistakenly removed terminating resistors.
摘要:
A generic chip carrier is described which includes, as integral parts, a voltage bus and a plurality of terminating resistors connected between the voltage bus and signal traces on the carrier. The voltage bus wraps around the chip carrier, thus providing a large area of metal. Through the selective use of the terminating resistors, the generic carrier can be customized for a particular type of integrated circuit, i.e., source or destination termination of signals. A signal trace may be customized by "opening" the terminating resistor with a current spike applied by a standard electrical probe. Spare bonding pads and terminating resistors are placed at intervals about the periphery of the carrier as insurance against defective or mistakenly removed terminating resistors.