Abstract:
A deposition apparatus includes a coating chamber and a coating zone within the coating chamber for coating work pieces. A heating source heats the coating zone, and a thermal hood within the coating chamber is located adjacent to the coating zone for controlling a temperature of the coating zone.
Abstract:
An electron beam vapor deposition apparatus includes a coating chamber including a coating zone for depositing a coating on a work piece. A coating device includes at least one crucible for presenting at least one source coating material. The coating device includes a first deposition mode of depositing the at least one source coating material and a second deposition mode of depositing the at least one source coating material. At least one electron beam source evaporates the at least one source coating material for deposit onto the work piece. A controller is configured to control a speed of movement of the work piece in the coating zone during the coating operation in response to the first deposition mode and the second deposition mode.
Abstract:
An apparatus for coating a work piece includes a process chamber, a coating material supply apparatus located at least partially within the process chamber for delivering a coating material to the work piece, a pre-heater assembly adjoining the process chamber, and a support for holding the work piece. The pre-heater assembly includes a housing that opens to the process chamber, a thermal hood positioned within the housing and configured to reflect thermal energy for reflecting thermal energy toward the work piece. The support is movable to selectively move the work piece between a first position within the housing of the pre-heater assembly and a second position within the process chamber and outside the housing of the pre-heater assembly.
Abstract:
A multilayer coating includes a bond coat layer and a first barrier layer applied on the bond coat layer. The first barrier layer has a compositional gradient comprising a majority of a first rare earth stabilized zirconia material proximate the bond coat layer to a majority of a second rare earth stabilized zirconia material away from the bond coat layer. The first and second rare earth stabilized zirconia materials are different.
Abstract:
A multilayer coating includes a bond coat layer and a first barrier layer applied on the bond coat layer. The first barrier layer has a compositional gradient comprising a majority of a first rare earth stabilized zirconia material proximate the bond coat layer to a majority of a second rare earth stabilized zirconia material away from the bond coat layer. The first and second rare earth stabilized zirconia materials are different.
Abstract:
A coating system includes a work piece, a coating delivery apparatus configured to apply a coating material to the work piece in a plasma-based vapor stream, and a first electron gun configured to direct a first electron beam at the plasma-based vapor stream for adding thermal energy to the coating material in the plasma-based vapor stream.
Abstract:
An apparatus for coating a work piece includes a process chamber, a coating material supply apparatus located at least partially within the process chamber for delivering a coating material to the work piece, a pre-heater assembly adjoining the process chamber, and a support for holding the work piece. The pre-heater assembly includes a housing that opens to the process chamber, a thermal hood positioned within the housing and configured to reflect thermal energy for reflecting thermal energy toward the work piece. The support is movable to selectively move the work piece between a first position within the housing of the pre-heater assembly and a second position within the process chamber and outside the housing of the pre-heater assembly.
Abstract:
Disclosed are coatings which are improved by a special peening process. Uniform sized spherical steel shot, in the range 1-2.5 mm is impacted at uniform low velocities onto a coated workpiece. Peening intensities are in the range 0.30-0.60 mm N. MCrAlY high temperature coatings are particularly improved, with densities of the order of 99 percent. Physical vapor desposited coatings have surface finishes of the order of 30.times.10.sup.-6 inch AA (Arithmetic Average) and plasma sprayed coatings have finishes of the order of 100.times.10.sup.-6 inch AA compared to unpeened finishes of 50-60.times.10.sup.-6 inch AA and 200-300.times.10.sup.-6 AA respectively.
Abstract:
Disclosed is apparatus and method for electrochemically finishing the edges of airfoils and other thin edged objects. When the edge on an airfoil varies in thickness along its length, a tapered electrode is provided which has both a decreased diameter and increased spacing distance, providing a means for obtaining an edge with a radius proportioned to the thickness. Generally, in the system having an electrode with a unit surface area A, and with an electrode-workpiece surface spacing distance S, both A and S are changed so that the ratio A/S is lowered for electrode portions proximate to edge portions having lowered thickness.
Abstract:
A coating system includes a coating source and a planetary manipulator assembly that includes a first driveshaft capable of receiving rotational input, a sun gear rotationally fixed to the first driveshaft, a planetary gear engaged with the sun gear, a second driveshaft rotationally fixed to the planetary gear such that torque is transmitted from the sun gear to the planetary gear, a support shaft operatively engaged with the second driveshaft, a carrier body supporting the planetary gear relative to the sun gear, a third driveshaft capable of receiving rotational input, and a drive gear rotationally fixed to the third driveshaft. The support shaft is arranged substantially perpendicular to the second driveshaft. The carrier body is rotatable by the drive gear about a common axis with the sun gear, and rotation of the carrier body rotates the planetary gear and the second driveshaft about the sun gear.