摘要:
A method of generating complementary masks based on a target pattern having features to be imaged on a substrate for use in a multiple-exposure lithographic imaging process is disclosed. The method includes defining an initial H-mask and an initial V-mask corresponding to the target pattern; identifying horizontal critical features in the H-mask and vertical critical features in the V-mask; assigning a first phase shift and a first percentage transmission to the horizontal critical features, which are to be formed in the H-mask; and assigning a second phase shift and a second percentage transmission to the vertical critical features, which are to be formed in the V-mask. The method further includes the step of assigning chrome to all non-critical features in the H-mask and the V-mask.
摘要:
System and method for applying mask data patterns to substrate in a lithography manufacturing process are disclosed. In one embodiment, a parallel imaging writer system includes a plurality of spatial light modulator (SLM) imaging units, where each of the plurality of SLM imaging units includes one or more illumination sources, one or more alignment sources, one or more projection lenses, and a plurality of micro mirrors configured to project light from the one or more illumination sources to the corresponding one or more projection lens. The parallel imaging writer system further includes a controller configured to control the plurality of SLM imaging units, where the controller tunes each of the SLM imaging unit individually in writing a mask data to a substrate.
摘要:
A method of generating a model for simulating the imaging performance of an optical imaging system having a pupil. The method includes the steps of defining the optical imaging system and a process to be utilized by the optical imaging system; and defining a model equation representing the imaging performance of the optical imaging system and the process, where the model equation including a calibrated pupil kernel. The calibrated pupil kernel representing a linear model of the pupil performance.
摘要:
A method of generating complementary masks for use in a dark field double dipole imaging process. The method includes the steps of identifying a target pattern having a plurality of features, including horizontal and vertical features; generating a horizontal mask based on the target pattern, where the horizontal mask includes low contrast vertical features. The generation of the horizontal mask includes the steps of optimizing the bias of the low contrast vertical features contained in the horizontal mask; and applying assist features to the horizontal mask. The method further includes generating a vertical mask based on the target pattern, where the vertical mask contains low contrast horizontal features. The generation of the vertical mask includes the steps of optimizing the bias of low contrast horizontal features contained in the vertical mask; and applying assist features to the vertical mask.
摘要:
A method of generating complementary masks for use in a dark field double dipole imaging process. The method includes the steps of identifying a target pattern having a plurality of features, including horizontal and vertical features; generating a horizontal mask based on the target pattern, where the horizontal mask includes low contrast vertical features. The generation of the horizontal mask includes the steps of optimizing the bias of the low contrast vertical features contained in the horizontal mask; and applying assist features to the horizontal mask. The method further includes generating a vertical mask based on the target pattern, where the vertical mask contains low contrast horizontal features. The generation of the vertical mask includes the steps of optimizing the bias of low contrast horizontal features contained in the vertical mask; and applying assist features to the vertical mask.
摘要:
A method of generating a mask design having optical proximity correction features disposed therein. The methods includes the steps of obtaining a desired target pattern having features to be imaged on a substrate; determining an interference map based on the target pattern, the interference map defining areas of constructive interference and areas of destructive interference between at least one of the features to be imaged and a field area adjacent the at least one feature; and placing assist features in the mask design based on the areas of constructive interference and the areas of destructive interference.
摘要:
A method and system are used to modify pattern data obtained in relation to a pattern on a static patterning device. It is suggested that, in an example when a maskless lithography tool is used, continuous OPC-enhanced features used for maskless lithography rasterization should include a variation in local amplitude and phase transmittance that matches modulation capabilities of a patterning device being used. The modified pattern data is used by a dynamic patterning device to pattern impinging light, which is then projected onto an object. The system and method comprise using a pattern data generating device, a modification device, a dynamic pattern generator, and a projection system. The pattern data generating device generates pattern data corresponding to a pattern on a static patterning device. The modification device receives the pattern data and modifies the pattern data using characteristics of a type of the dynamic pattern generator being used. The dynamic pattern generator receives the modified patterned data and uses the modified pattern data to pattern the beam of radiation. The projection system projects the patterned beam onto the object.
摘要:
A method of generating a mask is provided that optimizes the placement and shape of optical proximity correction (OPC) features such as scattering bars. According to some aspects, the method includes model-based techniques for determining where to place assist features within the design, thereby eliminating the need for experienced mask designers to perform OPC, and also substantially reducing the time required to determine an acceptable OPC solution. According to further aspects, the method provides an OPC assist feature placement technique that enhances the resulting depth of focus even when imaging features have dimensions on the order of a quarter of the wavelength of the imaging system.
摘要:
A method for optically transferring a lithographic pattern corresponding to an integrated circuit utilizing a high transmission attenuated phase-shift mask onto a semiconductor substrate by use of an optical exposure tool. The method comprising the steps of generating a diffraction pattern corresponding to the lithographic pattern, where the diffraction pattern indicates a plurality of spatial frequency components corresponding to the lithographic pattern; determining which of the spatial frequency components need to be captured by a lens in the optical exposure tool in order to accurately reproduce the lithographic pattern; determining a set of illumination conditions required for the optical exposure tool to capture the spatial frequency components necessary for accurately reproducing the lithographic pattern; and illuminating the high transmission attenuated phase-shift mask with this set of illumination conditions.
摘要:
A method of generating a mask for use in a photolithography process. The method includes the steps of determining a target mask pattern having a plurality of features to be imaged and an illumination system to be utilized to image the mask; identifying a critical pitch within the target pattern and optimizing illumination settings of the illumination system for imaging the critical pitch; identifying a forbidden pitch within the target pattern; and modifying the transmittance of the features having a pitch equal to or substantially equal to the forbidden pitch such that the exposure latitude of the features equal to or substantially equal to the forbidden pitch is increased.