Abstract:
Ear terminal comprising a sealing section (2) for arrangement in the meatus (3) of a human, comprising: an inner microphone (M2) having a sound inlet (S2) for being directed, directed into the meatus, an electronics unit (11) coupled the inner microphone (M2) and also being coupled to a power supply (12) as well as an outer microphone (M1) for measuring acoustic signals in the environment.
Abstract:
An ear terminal includes a sealing section arranged for use in the ear meatus of a human, with an inner microphone having a sound inlet for being directed into the meatus and an electronic unit including filtering elements coupled to the inner microphone for filtering the signal from the inner microphone, the filtering elements being programmable to transform the signals based on the sounds received in the ear by the inner microphone into sounds having essentially the characteristics of spoken sounds of the wearer of the ear terminal.
Abstract:
Ear protecting device with a sealing section for acoustically sealing the meatus of a human, includes a sound generator with a sound outlet for being directed toward the user meatus; an inner microphone with a sound inlet from the meatus, arranged for measuring the resulting sound field in the meatus; connected to an electronics unit including a sound analyser coupled to the inner microphone, for analyzing sound characteristics of the resulting sound field in the meatus, producing analyzed sound characteristics; storing part in the electronics unit for storing measured predetermined sound characteristics of a properly functioning ear protecting device; a comparing part in the electronics unit for comparing the inner microphone analyzed sound characteristics with the stored measured predetermined sound characteristics; indicating part coupled to the comparing part for being activated if the analyzed sound characteristics differ significantly from the predetermined sound characteristics.
Abstract:
A hearing protection device is disclosed which incorporates integrated audiometric testing, thereby allowing for testing without removal of safety hearing protection. The hearing protection is typically intended to be worn for the duration of a work shift, and allows for self-testing during the shift. Embodiments of the device may utilize a series of partial test sessions, so that each test session is kept brief so as to not interfere unduly with the work schedule. This may encourage frequent testing, hopefully aiding in early detection of potential hearing loss. Additionally, methods of use are disclosed.
Abstract:
Ear terminal and ear terminal system, in which at least one ear terminal includes a sealing section (2) arranged for use in the ear meatus (3) of a human, including an inner microphone (M2) having a sound inlet (S2) for being directed into the meatus (3); an electronic unit (11) including filtering part coupled to the inner microphone for filtering the signal from the inner microphone (M2), the filtering part being programmable to transform the signals based on the sounds received in the ear by the inner microphone (M2) into sounds when combined with the user's own voice, providing a voice sounding natural to the user.
Abstract:
An apparatus and a method of voice detection and discrimination apparatus for controlling a voice operated system. A protective ear terminal element in the apparatus protects the ear by providing acoustic attenuation. An inner electroacoustic transducer element on an inner side of the ear terminal element detects a first acoustic field and provides a first electronic signal representing the first acoustic field. An outer electroacoustic transducer element on an outer side of the ear terminal element detects a second acoustic field and provides a second electronic signal representing the second acoustic field. An electronics unit is connected with the electroacoustic transducer elements and includes first and second comparison members.
Abstract:
Programmable hybrid hearing aid with digital signal processing comprising a main section (1) which can be inserted in the meatus (6). The main section (1) comprises an open connection between the ear opening and an inner portion of the meatus (6), providing an acoustic transmission channel with low-pass characteristic and resonant amplification. The main section further comprises an electroacoustic transmission channel based on digital signal processing and a signal processor (DSP) and with possibility for suppressing a possible acoustic signal feedback through the acoustic transmission channel. A variant of the hearing aid is provided with a microphone (M1) and the feedback signal is suppressed by digital filtering. Another variant of the hearing aid employs two microphones (M1.M2). and the feedback signal may then be suppressed by phasing out before the digital signal processing, while the digital signal processing also comprises cancellation of the feedback signal in case of high gain. A number of response functions are stored in a memory (RAM2) in a control unit and is freely chosen by the user in regard of adaption to hearing function and acoustic environment. All the electronics of the electroacoustic channel in the hearing aid is implemented as a monolithic integrated circuit (3) in CMOS technology.
Abstract:
A hearing protection device is disclosed which incorporates integrated audiometric testing, thereby allowing for testing without removal of safety hearing protection. The hearing protection is typically intended to be worn for the duration of a work shift, and allows for self-testing during the shift. Embodiments of the device may utilize a series of partial test sessions, so that each test session is kept brief so as to not interfere unduly with the work schedule. This may encourage frequent testing, hopefully aiding in early detection of potential hearing loss. Additionally, methods of use are disclosed.
Abstract:
A miniaturized electrodynamic sound generator comprises a diaphragm, a permanent magnet with pole pieces, a magnet yoke, and a coil. The yoke is designed such that is constitutes a housing or a cabinet of the sound generator. The permanent magnet and the pole pieces are provided in a recess in the cabinet or the yoke and surrounded by the coil, which is connected to the diaphragm at a peripheral area thereof. The diaphragm is provided above the magnet system of the recess and fastened to the outside of the cabinet. The dynamic response of the sound generator is determined by the magnetic, electrical, mechanical, and acoustic parameters which are used in the design of the sound generator. By varying some of these parameters, the frequency and amplitude of a resonance may be chosen such that the sound generator may reconstruct the natural acoustic transfer function in the range of 2-4 kHz in the human meatus. This makes the sound generator particularly suitable for use in hearing aids.