Abstract:
The present invention proposes a method for feeding a burden to a blast furnace (32), wherein the method comprises providing a charging device (38) having at least one material hopper (40), the material hopper (40) comprising a hopper chamber (42), a material inlet aperture for feeding a burden into the hopper chamber (40), and a material discharge aperture for feeding a burden from the hopper chamber (40) to the blast furnace (32); the material inlet aperture having an associated inlet seal valve 44) for opening and closing the material inlet aperture and the material discharge aperture having an associated material discharge valve (46) for opening and closing the material discharge aperture. The method further comprises opening the material inlet aperture and closing the material discharge aperture; feeding a burden into the hopper chamber (40) through the material inlet aperture; closing the inlet seal valve (44); pressurizing the hopper chamber (40) by feeding pressurizing gas into the hopper chamber (40); and opening the material discharge valve (46) and feeding the burden from the hopper chamber (40) to the blast furnace (32). According to an important aspect of the invention, the method comprises feeding a predetermined amount of pressurized flushing gas through the hopper chamber (42) before pressurizing the hopper chamber (42), wherein the flushing gas comprises at least 75% carbon dioxide.
Abstract:
A charging device for charging a shaft furnace, including a rotary distributor and a variable drive for rotating the rotary distributor about an essentially vertical axis of rotation, where the rotary distributor includes a plurality of guiding members which form sliding channels for charge material, and where the rotary distributor comprises a junction slide from which each guiding member issues and which is arranged such that a flow of charge material slides via one specific guiding member in function of the velocity and/or the sense of rotation of the rotary distributor.
Abstract:
A method for calibrating a weighing system of a blast furnace top hopper and a corresponding weighing system are disclosed. The method comprises the step of using at least one actuator for exerting a vertical net force with a certain magnitude onto the hopper, so as to simulate a certain weight of charge material in the hopper; and the step of determining the magnitude of the vertical net force. According to the invention, the method further comprises the step of determining the magnitude of a pressure exerting a lifting force onto said hopper and the step of using the determined magnitude of the vertical net force and the determined magnitude of the pressure to establish calibration data for the weighing system.
Abstract:
A device for introducing dosed or proportioned quantities of pulverized solid materials into a carrier gas stream is presented. The device comprises a housing which defines a flow chamber in the axial direction for the flow of pressurized fluid or carrier gas. The housing also has a side aperture therethrough. The side aperture is connected to a container holding pulverized materials. Coaxial inner and outer sleeves, at least one of which is capable of rotation, are located within the housing. The outer sleeve communicates with the aperture while the inner sleeve has an axial bore which provides a passage for the carrier gas. Upon rotation of a sleeve, slots provided on each sleeve will align and overlap with each other and with the aperture to define a variable sized passage between the container and axial bore whereby the pulverized material is delivered therethrough to the carrier gas stream. A third sleeve which is coaxial with the inner and outer sleeves and rotatable about its longitudinal axis is located between the housing and the outer sleeve. This third sleeve has a radial aperture corresponding to the side aperture of the housing. The third sleeve acts as a valve between the dosing device and a distribution tank.
Abstract:
The present invention proposes a method for feeding a burden to a blast furnace (32), wherein the method comprises providing a charging device (38) having at least one material hopper (40), the material hopper (40) comprising a hopper chamber (42), a material inlet aperture for feeding a burden into the hopper chamber (40), and a material discharge aperture for feeding a burden from the hopper chamber (40) to the blast furnace (32); the material inlet aperture having an associated inlet seal valve 44) for opening and closing the material inlet aperture and the material discharge aperture having an associated material discharge valve (46) for opening and closing the material discharge aperture. The method further comprises opening the material inlet aperture and closing the material discharge aperture; feeding a burden into the hopper chamber (40) through the material inlet aperture; closing the inlet seal valve (44); pressurizing the hopper chamber (40) by feeding pressurizing gas into the hopper chamber (40); and opening the material discharge valve (46) and feeding the burden from the hopper chamber (40) to the blast furnace (32). According to an important aspect of the invention, the method further comprises subjecting at least a portion of a top gas recovered from the blast furnace (32) to a recycling process wherein carbon dioxide is removed from the recovered top gas; and feeding at least a portion of the recovered carbon dioxide as pressurizing gas into the hopper chamber (40) for pressurizing the hopper chamber (40).
Abstract:
The invention concerns a charging installation for a shaft furnace, in particular for a blast furnace, and especially the lower sealing valve assembly thereof, the installation including at least two hoppers acting as lock hoppers for intermediate storage of charge material to be charged into the furnace, the lower sealing valve includes a lower sealing valve housing arranged below the hoppers, the lower sealing valve housing has at least two inlets respectively communicating with one of the hoppers and an outlet for passing charge material into the furnace, each inlet has a respective associated valve seat providing gas-tight sealing of the hoppers downstream, the lower sealing valve assembly further includes a sealing valve mechanism for sealing the inlets, more specifically for closing the seats in technically gas-tight manner, where the sealing valve mechanism includes a one-sided shutter having a single sealing face that cooperates with both of the at least two valve seats, by virtue of the sealing valve mechanism being configured to bring the sealing face of the one-sided shutter into sealing contact in turn with each of the at least two valve seats for sealing the associated inlet.
Abstract:
A rotary charging device for a shaft furnace, in particular a blast furnace, is disclosed. The charging device is equipped with a cooling system. The rotary charging device includes a rotatable support for rotary distribution means as well as a stationary housing for the rotatable support. The cooling system includes a rotary cooling circuit fixed in rotation with the rotatable support as well as a stationary cooling circuit on the stationary housing. A heat transfer device is provided which includes a stationary heat transfer element configured to be cooled by a cooling fluid flowing through the stationary cooling circuit and which includes a rotary heat transfer element configured to be heated by a separate cooling fluid circulated in the rotary cooling circuit. These heat transfer elements are arranged in facing relationship and have there between a heat transfer region for achieving heat transfer by convection and/or radiation through the heat transfer region without mixing of the separate cooling fluids of the rotary and stationary cooling circuits.
Abstract:
The device includes a radar antenna mounted at the inside end of an arm which can be horizontally inserted through the wall of the furnace above the loading surface, an electronic control and measuring unit placed outside the furnace, and one or two waveguides connecting the said antenna to the electronic unit through the arm. The waveguide or waveguides are duplicated by two reference waveguides of the same nature and of the same length but not connected to the said antenna systems in order to provide a forward and return path for a reference signal generated by the electronic unit and which remains correlated with the measurment signal to allow a better identification of the reflected signal.
Abstract:
A radar probe including several individual scanning antennas is mounted in the wall of the furnace above the loading surface and performs a two-dimensional scanning of the entire loading surface.
Abstract:
The present invention proposes a method for feeding a burden to a blast furnace (32), wherein the method comprises providing a charging device (38) having at least one material hopper (40), the material hopper (40) comprising a hopper chamber (42), a material inlet aperture for feeding a burden into the hopper chamber (40), and a material discharge aperture for feeding a burden from the hopper chamber (40) to the blast furnace (32); the material inlet aperture having an associated inlet seal valve 44) for opening and closing the material inlet aperture and the material discharge aperture having an associated material discharge valve (46) for opening and closing the material discharge aperture. The method further comprises opening the material inlet aperture and closing the material discharge aperture; feeding a burden into the hopper chamber (40) through the material inlet aperture; closing the inlet seal valve (44); pressurizing the hopper chamber (40) by feeding pressurizing gas into the hopper chamber (40); and opening the material discharge valve (46) and feeding the burden from the hopper chamber (40) to the blast furnace (32). According to an important aspect of the invention, the method further comprises subjecting at least a portion of a top gas recovered from the blast furnace (32) to a recycling process wherein carbon dioxide is removed from the recovered top gas; and feeding at least a portion of the recovered carbon dioxide as pressurizing gas into the hopper chamber (40) for pressurizing the hopper chamber (40).