Abstract:
Active materials of the invention contain at least one alkali metal and at least one other metal capable of being oxidized to a higher oxidation state. Preferred other metals are accordingly selected from the group consisting of transition metals (defined as Groups 4-11 of the periodic table), as well as certain other non-transition metals such as tin, bismuth, and lead. The active materials may be synthesized in single step reactions or in multi-step reactions. In at least one of the steps of the synthesis reaction, reducing carbon is used as a starting material. In one aspect, the reducing carbon is provided by elemental carbon, preferably in particulate form such as graphites, amorphous carbon, carbon blacks and the like. In another aspect, reducing carbon may also be provided by an organic precursor material, or by a mixture of elemental carbon and organic precursor material.
Abstract:
The present invention relates to a method for preparing an electroactive metal polyanion or a mixed metal polyanion comprising forming a slurry comprising a polymeric material, a solvent, a polyanion source or alkali metal polyanion source and at least one metal ion source; heating said slurry at a temperature and for a time sufficient to remove the solvent and form an essentially dried mixture; and heating said mixture at a temperature and for a time sufficient to produce an electroactive metal polyanion or electroactive mixed metal polyanion. The electrochemically active materials so produced are useful in making electrodes and batteries.
Abstract:
A method for carrying out solid state reactions under reducing conditions is provided. Solid state reactants include at least one inorganic metal compound and a source of reducing carbon. The reaction may be carried out in a reducing atmosphere in the presence of reducing carbon. Reducing carbon may be supplied by elemental carbon, by an organic material, or by mixtures. The organic material is one that can form decomposition products containing carbon in a form capable of acting as a reductant. The reaction proceeds without significant covalent incorporation of organic material into the reaction product. In a preferred embodiment, the solid state reactants also include an alkali metal compound. The products of the method find use in lithium ion batteries as cathode active materials. Preferred active materials include lithium-transition metal phosphates and lithium-transition metal oxides. In a preferred embodiment, the reaction product contains carbon particles intimately mixed among crystals of the active materials.
Abstract:
The invention provides new and novel lithium-metal-fluorophosphates which, upon electrochemical interaction, release lithium ions, and are capable of reversibly cycling lithium ions. The invention provides a rechargeable lithium battery which comprises an electrode formed from the novel lithium-metal-fluorophosphates. The lithium-metal-fluorophosphates comprise lithium and at least one other metal besides lithium.
Abstract:
The present invention relates to novel electrode active materials represented by the general formula AaMb(XY4)2Zd, wherein: (a) A is one or more alkali metals, and 0
Abstract translation:本发明涉及由通式A表示的新型电极活性材料。(XY4)2 SUB 其中:(a)A是一种或多种碱金属,0
Abstract:
Active materials of the invention contain at least one alkali metal and at least one other metal capable of being oxidized to a higher oxidation state. Preferred other metals are accordingly selected from the group consisting of transition metals (defined as Groups 4-11 of the periodic table), as well as certain other non-transition metals such as tin, bismuth, and lead. The active materials may be synthesized in single step reactions or in multi-step reactions. In at least one of the steps of the synthesis reaction, reducing carbon is used as a starting material. In one aspect, the reducing carbon is provided by elemental carbon, preferably in particulate form such as graphites, amorphous carbon, carbon blacks and the like. In another aspect, reducing carbon may also be provided by an organic precursor material, or by a mixture of elemental carbon and organic precursor material.
Abstract:
Sodium ion batteries are based on sodium based active materials selected among compounds of the general formula AaMb(XY4)cZd, wherein A comprises sodium, M comprises one or more metals, comprising at least one metal which is capable of undergoing oxidation to a higher valence state, Z is OH or halogen, and XY4 represents phosphate or a similar group. The anode of the battery includes a carbon material that is capable of inserting sodium ions. The carbon anode cycles reversibly at a specific capacity greater than 100 mAh/g.
Abstract:
The invention provides a method for making lithium mixed metal materials in electrochemical cells. The lithium mixed metal materials comprise lithium and at least one other metal besides lithium. The invention involves the reaction of a metal compound, and a phosphate compound, with a reducing agent to reduce the metal and form a metal phosphate. The invention also includes methods of making lithium metal oxides involving reaction of a lithium compound, and a metal oxide with a reducing agent.
Abstract:
The invention provides novel lithium-mixed metal materials which, upon electrochemical interaction, release lithium ions, and are capable of reversibly cycling lithium ions. The invention provides a rechargeable lithium battery which comprises an electrode formed from the novel lithium-mixed metal materials. Methods for making the novel lithium-mixed metal materials and methods for using such lithium-mixed metal materials in electrochemical cells are also provided. The lithium-mixed metal materials comprise lithium and at least one other metal besides lithium. Preferred materials are lithium-mixed metal phosphates which contain lithium and two other metals besides lithium.
Abstract:
The present invention relates to a method for preparing a lithium vanadium phosphate material comprising forming a aqueous slurry (in which some of the components are at least partially dissolved) comprising a polymeric material, an acidic phosphate anion source, a lithium compound, V2O5 and a source of carbon; wet blending said slurry, spray drying said slurry to form a precursor composition; and heating said precursor composition to produce a lithium vanadium phosphate. In one embodiment the present invention relates to a method for preparing a lithium vanadium phosphate which comprises reacting vanadium pentoxide (V2O5) with phosphoric acid (H3PO4) to form a partially dissolved slurry; then mixing with an aqueous solution containing lithium hydroxide; adding a polymeric material and a source of carbon to form a slurry; wet blending said slurry; spray drying said slurry to form a precursor composition; and heating said precursor composition for a time and at a temperature sufficient to produce a lithium vanadium phosphate compound. In an alternative embodiment the present invention relates to a method for preparing a lithium vanadium phosphate which comprises preparing an aqueous solution of lithium hydroxide; partially dissolving vanadium pentoxide in said aqueous solution; adding phosphoric acid to the aqueous solution; adding a polymeric material and a source of carbon to the solution containing vanadium pentoxide to form a slurry; spray drying said slurry to form a precursor composition; and heating said precursor composition for a time and at a temperature sufficient to form a lithium vanadium phosphate. The electrochemically active lithium vanadium phosphate so produced is useful in making electrodes and batteries.
Abstract translation:本发明涉及一种制备磷酸钒锂材料的方法,包括形成包含聚合物材料,酸性磷酸盐阴离子源,锂化合物,V 2 O 5和/或其混合物的含水浆料(其中一些成分至少部分溶解) 碳源 湿混合所述浆料,喷雾干燥所述浆料以形成前体组合物; 并加热所述前体组合物以产生磷酸钒锂。 在一个实施方案中,本发明涉及一种制备磷酸钒锂的方法,其包括使五氧化二钒(V 2 O 5)与磷酸(H 3 PO 4)反应以形成部分溶解的浆料; 然后与含有氢氧化锂的水溶液混合; 添加聚合物材料和碳源以形成浆料; 湿混合所述浆料; 喷雾干燥所述浆料以形成前体组合物; 并加热所述前体组合物一段时间和足以产生磷酸钒锂化合物的温度。 在替代实施方案中,本发明涉及一种制备磷酸钒锂的方法,其包括制备氢氧化锂水溶液; 将五氧化二钒部分溶解在所述水溶液中; 向该水溶液中加入磷酸; 向含有五氧化二钒的溶液中加入聚合物材料和碳源以形成浆料; 喷雾干燥所述浆料以形成前体组合物; 并将所述前体组合物加热足以形成磷酸钒锂的时间和温度。 如此生产的电化学活性锂钒磷酸盐可用于制造电极和电池。