摘要:
A probe monitoring system for riverbed elevation monitoring at bridge piers is revealed. The system includes a housing, a measuring rod, a moving member, a control module, a photographic unit and a sensing unit. The housing is fixed on the pier. Both the moving member for driving the measuring rod and the control module for control of the moving member are mounted in the housing. When the control module drives the measuring rod to move downward and the sensing unit on the bottom of the measuring rod approaches the riverbed, a sensing signal is sent to the control module. Thus the moving member stops moving the measuring rod and the photographic unit takes pictures of the measuring rod to generate an image. Then the riverbed elevation is obtained according to the image or the movement of the moving member and is sent to a remote monitor unit for real-time monitoring.
摘要:
A landform monitoring system includes a pressure sensing device mounted on a mounting frame, and including a housing unit configured with an accommodating space and having first and second openings in fluid communication with the accommodating space. A pressure sensor is attached to the housing unit, and seals the first opening. A flexible sheet is attached to the housing unit and seals the second opening. A fluid medium is filled fully in the accommodating space. When the sheet deforms as a result of an external pressure acting thereon, a pressure corresponding to the deformation of the sheet is transmitted to the pressure sensor via the fluid medium such that the pressure sensor generates a pressure sensing signal corresponding to the external pressure.
摘要:
A probe monitoring system for riverbed elevation monitoring at bridge piers is revealed. The system includes a housing, a measuring rod, a moving member, a control module, a photographic unit and a sensing unit. The housing is fixed on the pier. Both the moving member for driving the measuring rod and the control module for control of the moving member are mounted in the housing. When the control module drives the measuring rod to move downward and the sensing unit on the bottom of the measuring rod approaches the riverbed, a sensing signal is sent to the control module. Thus the moving member stops moving the measuring rod and the photographic unit takes pictures of the measuring rod to generate an image. Then the riverbed elevation is obtained according to the image or the movement of the moving member and is sent to a remote monitor unit for real-time monitoring.
摘要:
A monitor system for monitoring riverbed elevation changes at bridge piers is revealed. The monitor system includes a container, a rail, a holder, a photographic unit, a processor and a transmission unit. The container is disposed at a pier under the water and the rail is mounted in the container. The holder is arranged at the rail and is moved on the rail. The photographic unit is disposed on the holder to capture a monitor image of a riverbed under the water. As to the processor, it processes the monitor image so as to learn elevation change of the riverbed under the water. By the transmission unit, the riverbed elevation change is sent to a remote monitor unit so as to get the riverbed elevation according to the riverbed elevation change. Thus the riverbed elevation change at the bridge pier is monitored in real time.
摘要:
A telescopic probe monitoring system for riverbed elevation monitoring at a bridge pier is revealed. The system includes a measurement module for measuring riverbed elevation under water and a control module. The measurement module includes a housing, a multi-layer tube, a driving member with scales, a photographic unit for capturing images, and a sensing unit. The control module controls the driving member to extend the multi-layer tube. Thus the sensing unit on the bottom of the multi-layer tube contacts the riverbed and then sends a sensing signal to the control module for stopping pushing the multi-layer tube and controlling the photographic unit to capture images of the driving member. According to the images and movement of the measurement module, the control module learns the riverbed elevation and sends the riverbed elevation to a remote monitor unit for real-time monitoring of the riverbed elevation.
摘要:
A monitor system for monitoring riverbed elevation changes at bridge piers is revealed. The monitor system includes a container, a rail, a holder, a photographic unit, a processor and a transmission unit. The container is disposed at a pier under the water and the rail is mounted in the container. The holder is arranged at the rail and is moved on the rail. The photographic unit is disposed on the holder to capture a monitor image of a riverbed under the water. As to the processor, it processes the monitor image so as to learn elevation change of the riverbed under the water. By the transmission unit, the riverbed elevation change is sent to a remote monitor unit so as to get the riverbed elevation according to the riverbed elevation change. Thus the riverbed elevation change at the bridge pier is monitored in real time.
摘要:
The present invention relates to a multi-lens monitoring system for bed elevation around a pier according to the present invention comprises a container, a holder, a plurality of photographing units, and a processing module. The container is disposed on the pier; the holder is disposed inside the container; and the plurality of photographing units are disposed on the holder for photographing the bed under water and producing a monitoring image. The processing module is used for activating one of the plurality of photographing units for photographing the bed under water. The processing module also analyzes the monitoring image, gives the elevation variation of the bed, and transmits the elevation variation of the bed to a remote monitoring unit for real-timely monitoring and recording. During the monitoring process, the processing module will change activating one of the plurality of photographing units according to the monitoring image, and hence the electrical power can be saved.
摘要:
A telescopic probe monitoring system for riverbed elevation monitoring at a bridge pier is revealed. The system includes a measurement module for measuring riverbed elevation under water and a control module. The measurement module includes a housing, a multi-layer tube, a driving member with scales, a photographic unit for capturing images, and a sensing unit. The control module controls the driving member to extend the multi-layer tube. Thus the sensing unit on the bottom of the multi-layer tube contacts the riverbed and then sends a sensing signal to the control module for stopping pushing the multi-layer tube and controlling the photographic unit to capture images of the driving member. According to the images and movement of the measurement module, the control module learns the riverbed elevation and sends the riverbed elevation to a remote monitor unit for real-time monitoring of the riverbed elevation.
摘要:
The present invention relates to a multi-lens monitoring system for bed elevation around a pier according to the present invention comprises a container, a holder, a plurality of photographing units, and a processing module. The container is disposed on the pier; the holder is disposed inside the container; and the plurality of photographing units are disposed on the holder for photographing the bed under water and producing a monitoring image. The processing module is used for activating one of the plurality of photographing units for photographing the bed under water. The processing module also analyzes the monitoring image, gives the elevation variation of the bed, and transmits the elevation variation of the bed to a remote monitoring unit for real-timely monitoring and recording. During the monitoring process, the processing module will change activating one of the plurality of photographing units according to the monitoring image, and hence the electrical power can be saved.
摘要:
A landform monitoring system includes a pressure sensing device mounted on a mounting frame, and including a housing unit configured with an accommodating space and having first and second openings in fluid communication with the accommodating space. A pressure sensor is attached to the housing unit, and seals the first opening. A flexible sheet is attached to the housing unit and seals the second opening. A fluid medium is filled fully in the accommodating space. When the sheet deforms as a result of an external pressure acting thereon, a pressure corresponding to the deformation of the sheet is transmitted to the pressure sensor via the fluid medium such that the pressure sensor generates a pressure sensing signal corresponding to the external pressure.