Abstract:
A device including a housing having an inside diameter defining a first chamber and a port formed through the housing in fluid communication with the first chamber. A shuttle flange, having a diameter, is moveably positioned within the first chamber. The shuttle flange moves during a gas-release cycle between i) a closed position blocking the port containing the compressed gas in the first chamber, and ii) an open position exposing an exit area of the port through which the compressed gas is discharged to produce a primary pressure pulse. Desirably, the primary pressure pulse produced has an average rising slope less than 2.9 bar-m/ms. A method for generating a seismic pressure pulse in water includes the steps of, confining a compressed gas within a chamber having a port, creating an exit area through the port by moving a shuttle along the length of the port during a gas-release cycle, pre-releasing a charge of the compressed gas through the exit area to create a pre-released bubble, choking the exit area, and producing a primary pressure pulse by releasing a main charge of compressed gas through the exit area. The primary pressure pulse may be created approximately at the maximum volume of the pre-released bubble. The primary pressure pulse may be created at approximately half of the bubble period of the pre-released gas bubble.
Abstract:
A seismic source array 15 comprises a plurality of seismic source 26 arranged about a central point of the source array 15 in such a way that an imaginary circle drawn with said central point at its center, and containing all of said seismic sources 26, can be divided into at least three whole sectors each of which contains a substantially identical arrangement of seismic sources 26.
Abstract:
A device including a housing defining a first chamber and a port formed through the housing. A shuttle flange moveably positioned within the first chamber. The shuttle flange moves during a gas-release cycle between i) a closed position blocking the port, and ii) an open position exposing an exit area of the port through which a compressed gas is discharged. A method for generating a seismic pressure pulse in water includes the steps of, confining a compressed gas within a chamber having a port, creating an exit area through the port by moving a shuttle along the length of the port during a gas-release cycle, pre-releasing a charge of the compressed gas through the exit area to create a pre-released bubble, choking the exit area, and producing a primary pressure pulse by releasing a main charge of compressed gas through the exit area.