Abstract:
Substituted monocyclopentadienyl, monoindenyl, monofluorenyl or heterocyclopentadienyl complexes of chromium, molybdenum or tungsten, wherein at least one of the substituents of the cyclopentadienyl ring carries a rigid donor function which is not exclusively bonded through sp3-hybridized carbon or silicon atoms, and a process for polymerizing olefins.
Abstract:
Disclosed is a method of manufacturing a lithium battery having a stack of a negative electrode, a separator, and a positive electrode. A pattern of holes is produced in the negative electrode as well as in the positive electrode. A polymeric material is applied on at least one side of the stack and the stack is subjected to heat and pressure, so that the polymeric material penetrates the holes, whereby components are stuck and pressed together. The polymeric material includes bulges which are at least partially located at the ends of holes in the electrode (s). The provision of such bulges of polymeric material makes enough polymeric material available to fill the holes and stick together the electrodes and the separator, while on the outer sides of the stack, in between the holes, the polymeric material can be very thin or even be absent.
Abstract:
Substituted monocyclopentadienyl, monoindenyl, monofluorenyl and heterocyclopentadienyl complexes of chromium, molybdenum or tungsten in which at least one of the substituents on the cyclopentadienyl ring carries a donor function which is bonded rigidly, not exclusively via sp3-hybridized carbon or silicon atoms, and a process for the polymerization of olefins.
Abstract:
Substituted monocyclopentadienyl, monoindenyl, monofluorenyl and heterocyclopentadienyl complexes of chromium, molybdenum or tungsten in which at least one of the substituents on the cyclopentadienyl ring carries a donor function which is bonded rigidly, not exclusively via sp3-hybridized carbon or silicon atoms, and a process for the polymerization of olefins.
Abstract:
Substituted monocyclopentadienyl, monoindenyl, monofluorenyl and heterocyclopentadienyl complexes of chromium, molybdenum or tungsten in which at least one of the substituents on the cyclopentadienyl ring carries a donor function which is bonded rigidly, not exclusively via sp3-hybridized carbon or silicon atoms, and a process for the polymerization of olefins.
Abstract:
Disclosed are a lithium battery and methods for the manufacture thereof. Such a lithium battery includes a stack of a negative electrode, a separator, and a positive electrode. In the manufacturing methods, a pattern of holes is produced in the negative electrode as well as in the positive electrode, and a polymeric material is caused to penetrate the holes, whereby the negative electrode, the positive electrode and the separator are stuck and pressed together. Moreover, the negative electrode and the positive electrode are provided with an alignment pattern which can be used for the purpose of aligning the electrodes. The presence of such an alignment pattern facilitates the alignment of the layers with respect to each other.
Abstract:
Substituted monocyclopentadienyl, monoindenyl, monofluorenyl and heterocyclopentadienyl complexes of chromium, molybdenum or tungsten in which at least one of the substituents on the cyclopentadienyl ring carries a donor function which is bonded rigidly, not exclusively via sp3-hybridized carbon or silicon atoms, and a process for the polymerization of olefins.
Abstract:
&agr;-Olefins are polymerized in the gas phase at from 30 to 150° C. and a pressure of from 5 to 80 bar using a catalyst or a catalyst mixture containing as antistatic agent from 0.1 to 5% by weight of ZnO and/or anhydrous MgO, based on the total amount of the catalyst mixture, except for a process in which the catalyst mixture comprises a chromium catalyst and MgO-supported Ziegler catalyst which is modified with an alkene and with alkylaluminum hydride and also comprises free MgO and the total amount of the MgO is not less than 2% by weight of the catalyst mixture.
Abstract:
A light emitting device (100) is provided, which comprises a substrate (101) accomodating at least one light emitting diode (104) and an elastomeric layer (105) arranged to receive light from the light emitting diode(s) (104). The elastomeric layer (105) comprises phosphors (106), which enhance the output of light from the device (100). The light emitting device (100) is flexible and may be incorporated into a fabric, such as a textile or a plastics. Consequently, a textile product (300) comprising such a device (100) is provided.
Abstract:
A submount for arranging electronic components on a substrate is provided. The submount comprises a head member and at least one substrate-engaging member protruding from the head member. The head member comprises at least two, from each other isolated, electrically conductive portions, where each electrically conductive portion comprises a component contact, adapted for connection of electronic components thereto, and a substrate contact on arranged on said substrate side, adapted for bringing said electrically conductive portions in contact with a circuitry comprised in said substrate. The submount of the present invention may be used to attach electronic components, such as light-emitting diodes, to a textile substrate, without the need for soldering the electronic component directly on the substrate.