Abstract:
Techniques for utilizing trusted hardware components for mitigating the effects of equivocation amongst participant computing devices of a distributed system are described herein. For instance, a distributed system employing a byzantine-fault-resilient protocol—that is, a protocol intended to mitigate (e.g., tolerate, detect, isolate, etc.) the effects of byzantine faults—may employ the techniques. To do so, the techniques may utilize a trusted hardware component comprising a non-decreasing counter and a key. This hardware component may be “trusted” in that the respective participant computing device cannot modify or observe the contents of the component in any manner other than according to the prescribed procedures, as described herein. Furthermore, the trusted hardware component may couple to the participant computing device in any suitable manner, such as via a universal serial bus (USB) connection or the like.
Abstract:
A system and method that facilitates and effectuates distinguishing a human from a non-human user. A human interactive proof (HIP) employs a partial credit algorithm in order to allow a user to make one or more mistakes during consecutive HIP challenges and still be identified as a human. The algorithm assigns a user partial credit based upon getting part of the challenge incorrect. The partial credit is tracked and if during one or more consecutive subsequent challenges the same user gets a portion of the challenge incorrect again, they can still be identified as human.
Abstract:
A system and method for mitigating memory errors in a computer system. Faulty memory is identified and tested by a memory manager of an operating system. The memory manager may perform diagnostic tests while the operating system is executing on the computer system. Regions of memory that are being used by software components of the computer system may also be tested. The memory manager maintains a stored information about faulty memory regions. Regions are added to the stored information when they are determined to be faulty by a diagnostic test tool. Memory regions are allocated to software components by the memory manager after checking the stored information about faulty memory regions. This ensures a faulty memory region is never allocated to a software component of the computer system.
Abstract:
A system and method that facilitates and effectuates distinguishing a human from a non-human user. A human interactive proof (HIP) employs images from a large private database of manually categorized images to display as part of a Turing test challenge. The private database contains a sufficient quantity of images, such that the more economical manner to pass the HIP is to employ a human to take the challenge. The owner of the private database makes the database available to the presenter of the HIP due to an alignment of interests between both parties. The HIP is displayed with ads on behalf of the owner of the private database and the presenter of the HIP gains access to a large quantity of private manually categorized images.
Abstract:
A location history is a collection of locations over time for an object. A stay is a single instance of an object spending some time in one place, and a destination is any place where one or more objects have experienced a stay. Location histories are parsed using stays and destinations. In a described implementation, each location of a location history is recorded as a spatial position and a corresponding time at which the spatial position is acquired. Stays are extracted from a location history by analyzing locations thereof with regard to a temporal threshold and a spatial threshold. Specifically, two or more locations are considered a stay if they exceed a minimum stay duration and are within a maximum roaming distance. Each stay includes a location, a starting time, and an ending time. Destinations are produced from the extracted stays using a clustering operation and a predetermined scaling factor.
Abstract:
A method and system for regulating tasks of background processes so as to reduce interference with foreground processes. The progress rate of a background task (e.g., amount of work performed per unit time) is measured and evaluated against a target amount. If the progress rate appears degraded, the background task is suspended for a computed time interval so as to back off from its interference with a foreground process. Each time the progress rate appears degraded, the time interval is exponentially increased from its previous value up to a maximum, however if the performance appears normal, the time interval is reset to a minimum. Evaluation of the work is statistically based so as to eliminate variations in measurements, and automatic calibration of the target amount is provided, as is a mechanism for prioritizing multiple background tasks.
Abstract:
Domain name caching mechanisms are provided to address cache-defeating approaches. Domain name lookup requests are processed and cached information associated with a non-identical domain name returned in response. Cache-defeating behavior including nonce injection can be detected or inferred and employed to map domain name requests to previously cached information thereby exposing the benefits of caching.
Abstract:
Cryptographic protocols and methods of employing the same are described. The described protocols advantageously enable two or more identical encryptable objects that are coded for encryption with different keys to be identified as identical without access to either the unencrypted objects or the keys that are used in the encryption process. Additionally, the protocols enable two or more identical encryptable objects to be processed with different encryption keys, yet be stored in a manner so that the total required storage space is proportional to the space that is required to store a single encryptable object, plus a constant amount for each distinct encryption key. In various embodiments, the encryptable objects comprise files and the cryptographic protocols enable encrypted files to be used in connection with single instance store (SIS) systems.
Abstract:
A system and method that facilitates and effectuates distinguishing a human from a non-human user. A human interactive proof (HIP) employs images from a large private database of manually categorized images to display as part of a Turing test challenge. The private database contains a sufficient quantity of images, such that the more economical manner to pass the HIP is to employ a human to take the challenge. The owner of the private database makes the database available to the presenter of the HIP due to an alignment of interests between both parties. The HIP is displayed with ads on behalf of the owner of the private database and the presenter of the HIP gains access to a large quantity of private manually categorized images.
Abstract:
The described implementations relate to networked or distributed systems and more particularly to providing motivation for deployment of networked systems. One technique gathers a solicitation hierarchy in a distributed system. This technique also tracks contribution to the distributed system of participants within the hierarchy. This technique further probabilistically determines a participant as a lottery winner based at least in part on the solicitation hierarchy and the contribution.