Abstract:
An apparatus to measure the transient response of a mass flow controller (MFC). The size of a variable orifice, upstream of the MFC, is controlled such that the pressure between the orifice and the MFC is held constant during the entire time that the MFC is going through its transient response. The known relationship between the size of the orifice and the flow through it allows a determination of the transient response of the MFC.
Abstract:
Methods and apparatus utilize a rate of drop in pressure upstream of a gas flow controller (GFC) to accurately measure a rate of flow through the GFC. Measurement of the gas flow through the many gas flow controllers in production use today is enabled, without requiring any special or sophisticated pressure regulators or other special components. Various provisions ensure that none of the changes in pressure that occur during or after the measurement perturb the constant flow of gas through the GFC under test.
Abstract:
Methods and apparatus utilize a rate of drop in pressure upstream of a gas flow controller (GFC) to accurately measure a rate of flow through the GFC. Measurement of the gas flow through the many gas flow controllers in production use today is enabled, without requiring any special or sophisticated pressure regulators or other special components. Various provisions ensure that none of the changes in pressure that occur during or after the measurement perturb the constant flow of gas through the GFC under test.
Abstract:
An embodiment of a method in accordance with the present invention to determine the flow rate of a second gas relative to a first gas, comprises, setting a flow of a first gas to a known level, taking a first measurement of the first gas with a measurement technique sensitive to a concentration of the first gas, and establishing a flow of a second gas mixed with the first gas. A second measurement of the first gas is taken with a measurement technique that is sensitive to the concentration of the first gas, and the flow of the second gas is determined by a calculation involving a difference between the first measurement and the second measurement. In alternative embodiments, the first measurement may be taken of a flow of two or more gases combined, with the second measurement taken with one of the gases removed from the mixture. Certain embodiments of methods of the present invention may be employed in sequence in order to determine flow rates of more than two gases.
Abstract:
Embodiments of the present invention relate to the analysis of the components of one or more gases, for example a gas mixture sampled from a semiconductor manufacturing process such as plasma etching or plasma enhanced chemical vapor deposition (PECVD). Particular embodiments provide sufficient power to a plasma of the sample, to dissociate a large number of the molecules and molecular fragments into individual atoms. With sufficient power (typically a power density of between 3-40 W/cm3) delivered into the plasma, most of the emission peaks result from emission of individual atoms, thereby creating spectra conducive to simplifying the identification of the chemical composition of the gases under investigation. Such accurate identification of components of the gas may allow for the precise determination of the stage of the process being performed, and in particular for detection of process endpoint.
Abstract translation:本发明的实施例涉及一种或多种气体的组分的分析,例如从诸如等离子体蚀刻或等离子体增强化学气相沉积(PECVD)的半导体制造工艺中采样的气体混合物。 特定的实施方案为样品的等离子体提供足够的功率,以将大量分子和分子片段解离成单独的原子。 通过输送到等离子体中的足够的功率(通常为3-40W / cm 3的功率密度),大多数发射峰由单个原子的发射产生,从而产生有助于简化气体的化学组成的鉴定的光谱 调查 气体组分的这种精确识别可以允许精确确定正在执行的过程的阶段,特别是用于检测过程终点。
Abstract:
An apparatus to measure the transient response of a mass flow controller (MFC). The size of a variable orifice, upstream of the MFC, is controlled such that the pressure between the orifice and the MFC is held constant during the entire time that the MFC is going through its transient response. The known relationship between the size of the orifice and the flow through it allows a determination of the transient response of the MFC.
Abstract:
Methods and apparatus utilize a rate of drop in pressure upstream of a gas flow controller (GFC) to accurately measure a rate of flow through the GFC. Measurement of the gas flow through the many gas flow controllers in production use today is enabled, without requiring any special or sophisticated pressure regulators or other special components. Various provisions ensure that none of the changes in pressure that occur during or after the measurement perturb the constant flow of gas through the GFC under test.
Abstract:
Embodiments of the present invention employ measurement of argon as the means to detect the presence of an atmospheric leak in a processing chamber. Argon detected inside the process chamber is conclusive evidence of a leak. Furthermore, the amount of detected argon provides information on the rate of air entering through the leak. In one embodiment, leak detection takes place in the main plasma inside the processing chamber. In another embodiment, leak detection takes place in the self-contained plasma generated in a remote plasma sensor. Additional measurements can be performed, such as measuring the amount of oxygen, and/or the presence of moisture to help in detecting and quantifying outgassing from the processing chamber.
Abstract:
An in-situ gas flow measurement controller measures the temperature and rate of pressure drop upstream from a flow control device (FCD). The controller samples the pressure and temperature data and applies the equivalent of a decimating filter to the data to produce filtered data at a slower sampling rate. The controller derives timestamps by counting ticks from the sampling clock of the A/D converter that is sampling the pressure at regular intervals to ensure the timestamps associated with the pressure samples are accurate and do not contain jitter that is associated with software clocks. The controller additionally normalizes the temperature reading to account for power supply fluctuations, filters out noise from the pressure and temperature readings, and excludes data during periods of instability. It calculates the gas flow rate accounting for possible non-linearities in the pressure measurements, and provides the computed gas flow measurement via one of many possible interfaces.
Abstract:
An improved thermoelectric module is described. A first electrically conductive pattern is defined on a first substrate and a second electrically conductive pattern is defined on a second substrate. Alternating bars of a first thermoelectric material and a second thermoelectric material are arranged parallel to each other. The bars are fixed into place on the first conductive pattern by an effective thermal and electrical connection with the conductive pattern. One such connection means is soldering. Then the bars are separated into elements. The second substrate is positioned over the elements and fixed to the elements to complete the manufacture of the TEM.