Process for manufacturing hollow fused-silica insulator cylinder
    2.
    发明授权
    Process for manufacturing hollow fused-silica insulator cylinder 失效
    中空熔融石英绝缘子圆筒制造工艺

    公开(公告)号:US06331194B1

    公开(公告)日:2001-12-18

    申请号:US08889587

    申请日:1997-07-08

    IPC分类号: H01G900

    摘要: A method for building hollow insulator cylinders that can have each end closed off with a high voltage electrode to contain a vacuum. A series of fused-silica round flat plates are fabricated with a large central hole and equal inside and outside diameters. The thickness of each is related to the electron orbit diameter of electrons that escape the material surface, loop, and return back. Electrons in such electron orbits can support avalanche mechanisms that result in surface flashover. For example, the thickness of each of the fused-silica round flat plates is about 0.5 millimeter. In general, the thinner the better. Metal, such as gold, is deposited onto each top and bottom surface of the fused-silica round flat plates using chemical vapor deposition (CVD). Eutectic metals can also be used with one alloy constituent on the top and the other on the bottom. The CVD, or a separate diffusion step, can be used to defuse the deposited metal deep into each fused-silica round flat plate. The conductive layer may also be applied by ion implantation or gas diffusion into the surface. The resulting structure may then be fused together into an insulator stack. The coated plates are aligned and then stacked, head-to-toe. Such stack is heated and pressed together enough to cause the metal interfaces to fuse, e.g., by welding, brazing or eutectic bonding. Such fusing is preferably complete enough to maintain a vacuum within the inner core of the assembled structure. A hollow cylinder structure results that can be used as a core liner in a dielectric wall accelerator and as a vacuum envelope for a vacuum tube device where the voltage gradients exceed 150 kV/cm.

    摘要翻译: 一种用于构建中空绝缘体圆筒的方法,其可以将每个端部用高压电极封闭以包含真空。 一系列熔融石英圆形平板制造具有大的中心孔,内径和外径相等。 每个的厚度都与逃离材料表面的电子的电子轨道直径相关,并且返回。 这种电子轨道中的电子可以支持导致表面闪络的雪崩机制。 例如,每个熔融硅石圆形平板的厚度为约0.5毫米。 一般来说,越薄越好。 使用化学气相沉积(CVD)将诸如金的金属沉积在熔融二氧化硅圆形平板的每个顶部和底部表面上。 共晶金属也可以在顶部和底部的一个合金成分上使用。 可以使用CVD或单独的扩散步骤来将沉积的金属溶解到每个熔融二氧化硅圆形平板中。 导电层也可以通过离子注入或气体扩散施加到表面中。 然后将所得结构融合在一起成为绝缘体叠层。 涂覆的板对齐,然后堆叠,头对脚趾。 这种堆叠被加热并被压在一起足以使金属界面熔合,例如通过焊接,钎焊或共晶粘合。 这种熔化优选是完全足够的以保持组装结构的内芯内的真空。 中空圆筒结构可以用作电介质壁加速器中的芯衬层,并且用作电压梯度超过150kV / cm的真空管装置的真空封壳。