Abstract:
A method for manufacturing a magnetic write head having a leading magnetic shield and a trailing magnetic shield that are arranged to prevent the lost of magnetic write field to the trailing magnetic shield. The write head includes a non-magnetic step layer that provides additional spacing between the trailing magnetic shield and the write pole at a region removed from the air bearing surface.
Abstract:
A method for manufacturing a magnetic write head having a leading magnetic shield and a trailing magnetic shield that are arranged to prevent the lost of magnetic write field to the trailing magnetic shield. The write head includes a non-magnetic step layer that provides additional spacing between the trailing magnetic shield and the write pole at a region removed from the air bearing surface.
Abstract:
A magnetic head having an air bearing surface (ABS) and a first pole tip. A second pole tip is spaced apart from and facing the upper end of the first pole tip across a write gap. A bump extends into a portion of the upper end of the first pole tip and a portion of the bottom end of the second pole tip, the bump being positioned away from the ABS. The bump defines a throat height of the first and second pole tips.
Abstract:
Techniques of the present invention include detecting a touchdown between a read/write head of a disk drive and a surface of a magnetic disk using multiple touchdown sensors located at an air-bearing surface (ABS). The multiple sensors increase the likelihood that a touchdown event—i.e., a portion of the ABS of the head contacting the underlying magnetic disk surface—will be detected. During touchdown, the portion of the head contacting the magnetic disk generates frictional heat which changes a characteristic (e.g., the electrical resistance) of at least one of the sensors located at the ABS. When the sensors are connected to a detection circuit, the changing characteristic may be monitored to identify a touchdown event. The touchdown sensors may be, for example, electrically connected in either series or parallel to the detection circuit. Thus, as long as the electrical resistance of one of the sensors is changed, a touchdown event may be detected.
Abstract:
A magnetic write pole having a structure that prevents thermally induced pole tip protrusion. The write head has a return pole with a magnetic pedestal formed at the air bearing surface (ABS) and a back gap at an end opposite the ABS. An electrically conductive write coil having a plurality of turns passes over the return pole. A fill layer of a material having a low coefficient of thermal expansion, such as alumina is disposed between the coil and the pedestal, and may extend over the top of the coil to the back gap. A photoresist coil insulation layer may be provided between the turns of the coil to insulate the turns of the coil from one another. The photoresist coil insulation layer can also extend to the back gap. A write pole, formed above the return pole and coil is magnetically connected with the back gap layer and return pole by a magnetic shaping layer.
Abstract:
A magnetic write head for perpendicular magnetic recording having a write pole with a concave trailing edge. The magnetic write pole can have a trapezoidal shape with first and second laterally opposed sides that are further apart at the trailing edge than at the leading edge. The write head may or may not include a magnetic trailing shield, and if a trailing shield is included it is separated from the trailing edge by a non-magnetic write gap layer. The concave trailing edge improves magnetic performance such as by improving the transition curvature. A method for constructing the write head includes forming a magnetic write pole by forming a mask structure over a deposited write pole material, the mask structure having an alumina hard mask and an image transfer layer such as DURAMIDE®. An alumina fill layer is then deposited and a chemical mechanical polish is performed to open up the image transfer layer. A reactive on etch is performed to remove the image transfer layer and a reactive ion mill or reactive ion etch is performed to remove the alumina hard mask and form a concave surface on the write pole.
Abstract:
After defining the P2 pole of a magnetic read head, alumina is deposited over it and planarized by CMP, with the portion of the alumina overlaying the ABS region of the P2 pole subsequently being masked by a photoresist layer and with the portions of the alumina overlaying the flare area, back gap region, and center tap regions of the P2 pole not being masked. A reactive ion mill is performed to expose the flare area, back gap region, and center tap regions of the P2 pole by removing the alumina over these portions, so that subsequent steps such as forming a layer of coiled conductors, forming a return pole, and forming stud connections along with removing the respective seed layers can be executed with the ABS region protected by the alumina and with the flare area, back gap region, and center tap region exposed.
Abstract:
A magnetic head having an air bearing surface (ABS) and a first pole tip. A second pole tip is spaced apart from and facing the upper end of the first pole tip across a write gap. A bump extends into a portion of the upper end of the first pole tip and a portion of the bottom end of the second pole tip, the bump being positioned away from the ABS. The bump defines a throat height of the first and second pole tips.
Abstract:
A magnetic write head having a tapered trailing edge and having a magnetic layer formed over a trailing edge of the write pole at a location recessed from the ABS, the magnetic layer being separated from the trailing edge of the write pole by a thin non-magnetic layer. The thin non-magnetic layer is preferably sufficiently thin that the magnetic layer can function as a portion of the write pole in a region removed from the ABS. A trailing magnetic shield is formed over the write pole and is separated from the write pole by a non-magnetic trailing gap layer. A non-magnetic spacer layer can be formed over the magnetic layer to provide additional separation between the magnetic layer and the trailing magnetic shield.
Abstract:
A magnetic write head having a write pole with a tapered trailing edge. The write head has a non-magnetic step layer and a non-magnetic bump formed on the front edge of the magnetic step layer. A non-magnetic trailing gap layer is formed over the tapered trailing edge of the write pole and over the non-magnetic bump and over the non-magnetic step layer. A magnetic trailing shield is formed over at least a portion of the non-magnetic gap layer.