Abstract:
A saddle riding type vehicle includes a right wheel and a left wheel, a right lower arm and a left lower arm swingably provided on a vehicle arranged to support the right wheel and the left wheel to be movable up and down, and a right stopper member and a left stopper member arranged to contact the right lower arm and the left lower arm to stop the vehicle body from leaning in excess of a predetermined amount, which do not stop leaning of the vehicle body when the lean amount of the vehicle body is less than the predetermined amount. The vehicle body is arranged to lean freely when the lean amount of the vehicle body is in a range not exceeding the predetermined amount. Therefore, the rider can preferably travel comfortably.
Abstract:
An electronic endoscope system includes an electronic endoscope having a CMOS image sensor on the tip of an insertion section, a light source device for illuminating the interior of a patient's body, and a processing device for reading out image signals from the CMOS image sensor. The electronic endoscope system can operate with a standard imaging mode and a special imaging mode. When the time taken to read out the image signals from all the pixels in the standard mode is defined as T, the light source device in the special imaging mode emits illumination light in every first half period T/2 while switching a wavelength of the illumination light between two different wavebands. In every second half period T/2, the processing device reads out the image signals from the half of the pixels.
Abstract:
A plurality of sensor packages (4) are fixed to a circuit assembly board (47) and placed on a lower mold die (56) of a transfer molding apparatus (54). Attached inside a cavity (58a) of an upper mold die (58) is a protection sheet (65), which will make contact with the upper face of a cover glass (6) of each sensor package (4). When the upper mold die (58) meshes with the lower mold die (56), the upper face of the cover glass (6) is tightly covered with the protection sheet (65). A plunger (62) is activated to fill the cavities (56a, 58a) with sealing resin (7). The upper face of the cover glass (6) is not stained or damaged when the peripheries of the sensor packages (4) are sealed.
Abstract:
A transfer film, on which an adhesive is applied, is glued to plural spacers formed on a glass substrate. The glass substrate is laid on a working table, and one end of the transfer film is fixed to a winding roller. A peeling guide is set at a position over the transfer film. The winding roller is driven to wind the transfer film while the working table moves horizontally. While winding the transfer film, the angle between the glass substrate and the transfer film is kept constant. After the transfer film is peeled off, the adhesive is uniformly transferred to each of the spacers.
Abstract:
It is an object to provide solid-state imaging device, which can easily be manufactured and has a high reliability, and a method of manufacturing the solid-state imaging device. In the present invention, a manufacturing method comprises the steps of forming a plurality of IT-CCDs on a surface of a semiconductor substrate, bonding a translucent member to the surface of the semiconductor substrate in order to have a gap opposite to each light receiving region of the IT-CCD, and isolating a bonded member obtained at the bonding step for each of the IT-CCDs.
Abstract:
It is an object to provide solid-state imaging device, which can easily be manufactured and has a high reliability, and a method of manufacturing the solid-state imaging device. In the present invention, a manufacturing method comprises the steps of forming a plurality of IT-CCDs on a surface of a semiconductor substrate, bonding a translucent member to the surface of the semiconductor substrate in order to have a gap opposite to each light receiving region of the IT-CCD, and isolating a bonded member obtained at the bonding step for each of the IT-CCDs.
Abstract:
A projector includes a light source, an illumination optical system, and a color separating optical system. The color separating optical includes a dichroic mirror which reflects a first color light component of an illumination light through a first optical path by a reflection angle and transmits a second light component through a second optical path; a first mirror which bends the first optical path by a first bent angle; and a second mirror which bends the second optical path by a second bent angle. The reflection angle, the first bent angle, and the second bent angle are arranged to provide a predetermined difference between the length of the first optical path and the length of the second optical path, and the predetermined difference corresponding to a difference between focal distances of a superimposing optical element corresponding to the first and second light components.
Abstract:
A light source device includes: a light emitting tube having a light emitting portion that generates light by an electric discharge between a pair of electrodes and first and second sealed portions provided on either side of the light emitting portion; a main reflecting mirror provided along the first sealed portion of the light emitting tube and having a main reflecting portion that reflects light radiated from the light emitting tube so as to converge at a predetermined position; and a sub-reflecting mirror provided along the second sealed portion of the light emitting tube and having a sub-reflecting portion and a base portion, the sub-reflecting portion sending light radiated from the light emitting tube toward a side opposite to the main reflecting mirror back to the light emitting portion of the light emitting tube, and the base portion being provided at a side of the second sealed portion of the sub-reflecting portion and formed in a stepped manner with respect to the sub-reflecting portion.
Abstract:
It is an object to provide solid-state imaging device, which can easily be manufactured and has a high reliability, and a method of manufacturing the solid-state imaging device. In the present invention, a manufacturing method comprises the steps of forming a plurality of IT-CCDs on a surface of a semiconductor substrate, bonding a translucent member to the surface of the semiconductor substrate in order to have a gap opposite to each light receiving region of the IT-CCD, and isolating a bonded member obtained at the bonding step for each of the IT-CCDs.
Abstract:
The object of the present invention is to offer a can that features superior resistance against puncture under higher puncture strength, and superior resistance against flange cracking. The resin-coated aluminum seamless can body of the present invention features superior resistance against cracks in the can wall during distribution, and resistance against flange cracking, wherein the inner and/or outer surface of the can of the aluminum seamless can 10 is coated with a layer of thermo-plastic resin, the thickness of the thermoplastic resin layers of the inner surface and the outer surface is a total of 2-50 m, with a minimum thickness of the aluminum plate of the side wall of the can 0.110 mm or less, and the tensile stress at break measured for the aluminum plate that is removed from the thermo-plastic resin of the side wall of the can in the direction of the circumference of the can, is 450 MPa or less, the product of the minimum thickness of a plate of the side wall of the can including the thermo-plastic resin (mm), and the tensile stress measured of the side wall of the can including the thermo-plastic resin in the direction of height of the can s (MPa), is 30.