Abstract:
The present specification discloses SNAP-25 compositions, methods of making α-SNAP-25 antibodies that bind an epitope comprising a carboxyl-terminus at the P1 residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product, α-SNAP-25 antibodies that bind an epitope comprising a carboxyl-terminus at the P1 residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product, methods of detecting BoNT/A activity, and methods of detecting neutralizing α-BoNT/A antibodies.
Abstract:
A single chain, polypeptide fusion protein, comprising: a non-cytotoxic protease, or a fragment thereof, which protease or protease fragment can cleave a protein of the exocytic fusion apparatus of a nociceptive sensory afferent; a Targeting Moiety that can bind to a Binding Site on the nociceptive sensory afferent, which Binding Site can undergo endocytosis to be incorporated into an endosome within the nociceptive sensory afferent; a protease cleavage site at which site the fusion protein is cleavable by a protease, which is located between the non-cytotoxic protease and the Targeting Moiety; and a translocation domain that can translocate the protease or protease fragment from within an endosome, across the endosomal membrane and into the cytosol of the nociceptive sensory afferent; wherein the Targeting Moiety is BAM, β-endorphin, bradykinin, substance P, dynorphin and/or nociceptin. Nucleic acid sequences encoding the fusion proteins, methods of preparing same and uses thereof are also described.
Abstract:
A method and composition for treating a patient suffering from a disease, disorder or condition and associated pain include the administration to the patient of a therapeutically effective amount of a neurotoxin selected from a group consisting of Botulinum toxin types A, B, C, D, E, F and G.
Abstract:
The specification discloses modified Clostridial toxins comprising a Clostridial toxin enzymatic domain, a Clostridial toxin translocation domain, a translocation facilitating domain and an enhanced targeting domain; polynucleotide molecules encoding such modified Clostridial toxins; and method of producing such modified Clostridial toxins.
Abstract:
Methods for detecting BoNT/A activity in a sample, methods for screening molecules able to compete with BoNT/A receptor binding, methods for reducing BoNT/A activity in a human and methods of marketing a neurotoxin capable of selectively binding to a FGFR2, a FGFR3, a SV2, or any combination thereof, to a governmental or regional regulatory authority.
Abstract:
The present specification discloses SNAP-25 compositions, methods of making α-SNAP-25 antibodies that bind an epitope comprising a carboxyl-terminus at the P1 residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product, α-SNAP-25 antibodies that bind an epitope comprising a carboxyl-terminus at the P1 residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product, methods of detecting BoNT/A activity, and methods of detecting neutralizing α-BoNT/A antibodies.
Abstract:
A method and composition for treating a patient suffering from a disease, disorder or condition and associated pain include the administration to the patient of a therapeutically effective amount of a neurotoxin selected from a group consisting of botulinum toxin types A, B, C, D, E, F and G.
Abstract:
Compositions useful for detecting Clostridial toxin activity comprising a cell that comprises a membrane-associated Clostridial toxin substrate comprising a first member of a fluorescence resonance energy transfer pair; and a Clostridial toxin recognition sequence including a cleavage site; and a membrane-associated second member of the FRET pair and methods useful for determining Clostridial toxin activity using such Clostridial toxin substrates.
Abstract:
Compositions comprising activatable recombinant neurotoxins and polypeptides derived therefrom. The invention also comprises nucleic acids encoding such polypeptides, and methods of making such polypeptides and nucleic acids.
Abstract:
The present invention provides clostridial toxin substrates useful in assaying for the protease activity of any clostridial toxin, including botulinum toxins of all serotypes as well as tetanus toxins. A clostridial toxin substrate of the invention contains a donor fluorophore; an acceptor having an absorbance spectrum overlapping the emission spectrum of the donor fluorophore; and a clostridial toxin recognition sequence that includes a cleavage site, where the cleavage site intervenes between the donor fluorophore and the acceptor and where, under the appropriate conditions, resonance energy transfer is exhibited between the donor fluorophore and the acceptor.