摘要:
The object is to enable the calculation of load transfer paths in case of distributed load applied to the structure with the numerical structure-analysis calculation system. The value of the parameter U** at each point is calculated according to the ratio of the complementary strain energy U at the application of load without fixing the point in the structure and the complementary strain energy U′ at the application of load with fixing one point in the structure. In the actual calculation, according to the complementary strain energy U, and the flexibility matrix CAC with respect to the loading point A and one point C in the structure, and the inverse matrix CCC−1 of the flexibility matrix with respect to point C, and the load pA at the loading point A, the value of the parameter U** (CACCCC−1CCApA·pA/(2U)) at point C is calculated. Or, from the complementary strain energy U, and the inverse matrix CCC−1, and the displacement dC at point C, the value of the parameter U**(dC·CCC−1dC/(2U)) at point C is calculated.
摘要:
A method of manufacturing a semiconductor device includes the steps of: preparing an underlying structure having a silicon carbide layer covering a copper wiring, and growing silicon oxycarbide on the underlying structure by vapor deposition using, as source gas, tetramethylcyclotetrasiloxane, carbon dioxide gas and oxygen gas, a flow rate of said oxygen gas being at most 3% of a flow rate of the carbon dioxide gas. The surface of the silicon carbide layer of the underlying structure may be treated with a plasma of weak oxidizing gas which contains oxygen and has a molecular weight larger than that of O2 to bring the surface more hydrophilic. Film peel-off and cracks in the interlayer insulating layer decrease.
摘要:
A method of manufacturing a semiconductor device includes the steps of: preparing an underlying structure having a silicon carbide layer covering a copper wiring, and growing silicon oxycarbide on the underlying structure by vapor deposition using, as source gas, tetramethylcyclotetrasiloxane, carbon dioxide gas and oxygen gas, a flow rate of said oxygen gas being at most 3% of a flow rate of the carbon dioxide gas. The surface of the silicon carbide layer of the underlying structure may be treated with a plasma of weak oxidizing gas which contains oxygen and has a molecular weight larger than that of O2 to bring the surface more hydrophilic. Film peel-off and cracks in the interlayer insulating layer decrease.
摘要:
A semiconductor device manufacturing method includes the steps of: (a) forming a stopper layer for chemical mechanical polishing on a surface of a semiconductor substrate; (b) forming an element isolation trench in the stopper layer and the semiconductor substrate; (c) depositing a nitride film covering an inner surface of the trench; (d) depositing a first oxide film through high density plasma CVD, the first oxide film burying at least a lower portion of the trench deposited with the nitride film; (e) washing out the first oxide film on a side wall of the trench by dilute hydrofluoric acid; (f) depositing a second oxide film by high density plasma CVD, the second oxide film burying the trench after the washing-out; and (g) removing the oxide films on the stopper layer by chemical mechanical polishing.
摘要:
The method for forming an SiC-based film comprises the step of generating NH3 plasma on the surface of a substrate 20 in a chamber to make NH3 plasma processing on the substrate 20, the step of removing reaction products containing nitrogen remaining in the chamber, and the step of forming an SiC film 34 on the substrate 20 by PECVD.
摘要:
A semiconductor device manufacturing method includes the steps of: (a) forming a stopper layer for chemical mechanical polishing on a surface of a semiconductor substrate; (b) forming an element isolation trench in the stopper layer and the semiconductor substrate; (c) depositing a nitride film covering an inner surface of the trench; (d) depositing a first oxide film through high density plasma CVD, the first oxide film burying at least a lower portion of the trench deposited with the nitride film; (e) washing out the first oxide film on a side wall of the trench by dilute hydrofluoric acid; (f) depositing a second oxide film by high density plasma CVD, the second oxide film burying the trench after the washing-out; and (g) removing the oxide films on the stopper layer by chemical mechanical polishing.
摘要:
A semiconductor device including an underlying structure having a silicon carbide layer covering a copper wiring, and growing silicon oxycarbide on the underlying structure by vapor deposition using, as source gas, tetramethylcyclotetrasiloxane, carbon dioxide gas and oxygen gas, a flow rate of said oxygen gas being at most 3% of a flow rate of the carbon dioxide gas. The surface of the silicon carbide layer of the underlying structure may be treated with a plasma of weak oxidizing gas which contains oxygen and has a molecular weight larger than that of O2 to bring the surface more hydrophilic. Film peel-off and cracks in the interlayer insulating layer decrease.
摘要翻译:一种半导体器件,包括具有覆盖铜布线的碳化硅层的下面的结构,并且通过使用作为源气体四甲基环四硅氧烷,二氧化碳气体和氧气的气相沉积在底层结构上生长碳氧化碳,所述氧气的流速 为二氧化碳气体流量的3%以下。 下面结构的碳化硅层的表面可以用含有氧的弱氧化气体的等离子体处理,并且分子量大于O 2 O 2的分子量以使表面更亲水。 膜剥离和层间绝缘层中的裂纹减少。
摘要:
The object is to enable the calculation of load transfer paths in case of distributed load applied to the structure with the numerical structure-analysis calculation system. The value of the parameter U** at each point is calculated according to the ratio of the complementary strain energy U at the application of load without fixing the point in the structure and the complementary strain energy U′ at the application of load with fixing one point in the structure. In the actual calculation, according to the complementary strain energy U, and the flexibility matrix CAC with respect to the loading point A and one point C in the structure, and the inverse matrix CCC−1 of the flexibility matrix with respect to point C, and the load pA at the loading point A, the value of the parameter U** (CACCCC−1CCApA·pA/(2U))at point C is calculated. Or, from the complementary strain energy U, and the inverse matrix CCC−1, and the displacement dC at point C, the value of the parameter U**(dC·CCC−1dC/(2U)) at point C is calculated.
摘要:
A semiconductor device manufacturing method includes the steps of: (a) forming a stopper layer for chemical mechanical polishing on a surface of a semiconductor substrate; (b) forming an element isolation trench in the stopper layer and the semiconductor substrate; (c) depositing a nitride film covering an inner surface of the trench; (d) depositing a first oxide film through high density plasma CVD, the first oxide film burying at least a lower portion of the trench deposited with the nitride film; (e) washing out the first oxide film on a side wall of the trench by dilute hydrofluoric acid; (f) depositing a second oxide film by high density plasma CVD, the second oxide film burying the trench after the washing-out; and (g) removing the oxide films on the stopper layer by chemical mechanical polishing.
摘要:
A semiconductor device manufacture method has the steps of: (a) forming a polishing stopper layer over a semiconductor substrate; (b) etching the semiconductor substrate to form a trench; (c) forming a first liner insulating layer of silicon oxide over the surface of the trench; (d) forming a second liner insulating layer of silicon nitride over the first liner insulating layer, the second liner insulating layer having a thickness of at least 20 nm or at most 8 nm; (e1) depositing a third liner insulating layer of silicon oxide over the second liner insulating layer by plasma CVD at a first bias; and (e2) depositing an isolation layer of silicon oxide by plasma CVD at a second bias higher than the first bias, the isolation layer burying a recess defined by the third liner insulating layer.