摘要:
A semiconductor device includes a gate electrode formed through an insulating film in a groove having a first side surface adjacent to a source region and a base region, and a second conductive type first impurity region formed adjacent to a second side surface of the groove between the groove and a lead-out portion of a drain region existing below the base region so as to extend downward beyond a lower end of the groove.
摘要:
This invention provides a DMOS transistor that has a reduced ON resistance and is prevented from deterioration in strength against an electrostatic discharge. An edge portion of a source layer of the DMOS transistor is disposed so as to recede from an inner corner portion of a gate electrode. A silicide layer is structured so as not to extend out of the edge portion of the source layer. That is, although the silicide layer is formed on a surface of the source layer, the silicide layer is not formed on a surface of a portion of a body layer, which is exposed between the source layer and the inner corner portion of the gate electrode. As a result, the strength against the electrostatic discharge can be improved, because an electric current flows almost uniformly through whole of the DMOS transistor without converging.
摘要:
This invention provides a DMOS transistor that has a reduced ON resistance and is prevented from deterioration in strength against an electrostatic discharge. An edge portion of a source layer of the DMOS transistor is disposed so as to recede from an inner corner portion of a gate electrode. A silicide layer is structured so as not to extend out of the edge portion of the source layer. That is, although the silicide layer is formed on a surface of the source layer, the silicide layer is not formed on a surface of a portion of a body layer, which is exposed between the source layer and the inner corner portion of the gate electrode. As a result, the strength against the electrostatic discharge can be improved, because an electric current flows almost uniformly through whole of the DMOS transistor without converging.
摘要:
A fuel injection control system having an intelligent timer (TPU) to perform fuel injection control using the TPU even on request of asynchronous injection which is not synchronous with rotational angle signals. A central processing unit (CPU) calculates a value to be used during the execution of a synchronous injection (e.g., a fuel injection time) and an asynchronous injection time and stores these values in a parameter RAM. The CPU determines whether there is a request for an asynchronous injection from, for example, the quantity of a change in the opening of a throttle. The TPU also executes a synchronous injection if there is no asynchronous injection request. If there is an asynchronous injection request, it transmits an on output from input/output pins and causes a compare register to store a value which is the sum of the current time and an asynchronous injection time. It transmits an off output from the input/output pins if this value agrees with a value in a first free run counter.
摘要:
A semiconductor device includes a gate electrode formed through an insulating film in a groove having a first side surface adjacent to a source region and a base region, and a second conductive type first impurity region formed adjacent to a second side surface of the groove between the groove and a lead-out portion of a drain region existing below the base region so as to extend downward beyond a lower end of the groove.
摘要:
A control method and apparatus which detects a solenoid current as a voltage, and PWM-controls a transistor for a solenoid such that the detection voltage becomes a target voltage. A feedback gain, used for setting PWM signal output time, is set in accordance with the difference between the detection voltage and the target voltage such that the greater the difference becomes, the greater the feedback gain becomes. Further, a detection voltage after a predetermined period is estimated based on the change of detection voltage from the past. If the estimation value overshoots the target voltage, a difference B between the detection voltage and the target voltage and a difference C between the detection voltage and the estimation value are obtained, and the feedback gain is varied by multiplying the feedback gain by the ratio B/C between the these differences.