Abstract:
Systems, methods, and computer readable media for automatically generating Data Definition Language (DDL) commands from database log information is described. In general, techniques are disclosed for analyzing database log entries to identify those associated with targeted DDL commands and associating those entries with a DDL command object. The DDL command object may be used (immediately or at some later time) to generate a DDL commands corresponding to the (possibly many) aggregated log records associated with the command object. The use of multiple database log entries as described herein enables the generation of DDL commands that capture database activity occurring over a period of time (full time context auditing) and can, therefore, naturally account for database schema changes.
Abstract:
In one general aspect, an apparatus can include a completion identifier configured to identify, for completion processing, a large object (LOB) deleted from an auxiliary table within a DB2 database environment based on a space map record associated with the large object where the auxiliary table functions as an auxiliary space to a base table. The apparatus can also include a completion analyzer configured to identify a resource where an image of the large object is stored at a time before the deletion of the large object from the auxiliary table.
Abstract:
A mechanism works in conjunction with a DB2® Log and an analysis tool, such as BMC's Log Master™, to handle logged data for Large Objects (LOBs) stored in tables of a DB2 database system. A plurality of controls track data logged for the LOBs. The mechanism reads log records from a DB2 Log and uses the controls to determine which of the tracked LOBs is associated with the log records and obtains data from those associated log records. The mechanism builds keys to index the data and stores the keys and the data in a Virtual Storage Access Method store having Key Sequenced Data Sets maintained separate from the log record store for the DB2 Log. When requested by the analysis tool, the data in the store can be reassembled using the keys and map records in the first store that map the logged data for the tracked LOBs.
Abstract:
A mechanism works in conjunction with a DB2® Log and an analysis tool, such as BMC's Log Master™, to handle logged data for Large Objects (LOBs) stored in tables of a DB2 database system. A plurality of controls track data logged for the LOBs. The mechanism reads log records from a DB2 Log and uses the controls to determine which of the tracked LOBs is associated with the log records and obtains data from those associated log records. The mechanism builds keys to index the data and stores the keys and the data in a Virtual Storage Access Method store having Key Sequenced Data Sets maintained separate from the log record store for the DB2 Log. When requested by the analysis tool, the data in the store can be reassembled using the keys and map records in the first store that map the logged data for the tracked LOBs.
Abstract:
Techniques to create physically and transactionally consistent copies of one or more database objects without impacting the availability of the target database objects are described. In one technique, a consistent copy is created as of the time a copy utility is executed. In another technique, a consistent copy is created as of an arbitrary specified time. This approach modifies a prior copy to bring it “up-to-date.” In yet another technique, a consistent copy is created by starting with a current snapshot of the target database objects and selectively removing updates from it back to a user specified arbitrary point-in-time. Each of the described techniques generate consistent copies of the target database objects without blocking users from accessing the target objects during the copy operation.
Abstract:
A mechanism works in conjunction with a DB2® Log and an analysis tool, such as BMC's Log Master™, to handle logged data for Large Objects (LOBs) stored in tables of a DB2 database system. A plurality of controls track data logged for the LOBs. The mechanism reads log records from a DB2 Log and uses the controls to determine which of the tracked LOBs is associated with the log records and obtains data from those associated log records. The mechanism builds keys to index the data and stores the keys and the data in a Virtual Storage Access Method store having Key Sequenced Data Sets maintained separate from the log record store for the DB2 Log. When requested by the analysis tool, the data in the store can be reassembled using the keys and map records in the first store that map the logged data for the tracked LOBs.
Abstract:
Techniques to create physically and transactionally consistent copies of one or more database objects without impacting the availability of the target database objects are described. In one technique, a consistent copy is created as of the time a copy utility is executed. In another technique, a consistent copy is created as of an arbitrary specified time. This approach modifies a prior copy to bring it “up-to-date.” In yet another technique, a consistent copy is created by starting with a current snapshot of the target database objects and selectively removing updates from it back to a user specified arbitrary point-in-time. Each of the described techniques generate consistent copies of the target database objects without blocking users from accessing the target objects during the copy operation.
Abstract:
A method and a computer data signal including instructions for processing printed unit orders for printing on printers adapted for printing N pages across a print web. The orders are grouped based on page type (e.g., size, thickness, color) and binding type into print batches. These print batches are sorted, processed and then sent to the printer. Printed units may be organized with N single printed units printed in parallel across the web, a single printed unit sorted into N sections printed in parallel across all of the webs, or in super batches including multiple printed units, with N super batches printed in parallel across the web.
Abstract:
A mechanism works in conjunction with a DB2® Log and an analysis tool, such as BMC's Log Master™, to handle logged data for Large Objects (LOBs) stored in tables of a DB2 database system. A plurality of controls track data logged for the LOBs. The mechanism reads log records from a DB2 Log and uses the controls to determine which of the tracked LOBs is associated with the log records and obtains data from those associated log records. The mechanism builds keys to index the data and stores the keys and the data in a Virtual Storage Access Method store having Key Sequenced Data Sets maintained separate from the log record store for the DB2 Log. When requested by the analysis tool, the data in the store can be reassembled using the keys and map records in the first store that map the logged data for the tracked LOBs.
Abstract:
In one general aspect, an apparatus can include a completion identifier configured to identify, for completion processing, a large object (LOB) deleted from an auxiliary table within a DB2 database environment based on a space map record associated with the large object where the auxiliary table functions as an auxiliary space to a base table. The apparatus can also include a completion analyzer configured to identify a resource where an image of the large object is stored at a time before the deletion of the large object from the auxiliary table.