Abstract:
A nonvolatile memory element comprises a first electrode layer (103), a second electrode (107), and a resistance variable layer (106) which is disposed between the first electrode layer (103) and the second electrode layer (107), a resistance value of the resistance variable layer varying reversibly according to electric signals having different polarities which are applied between the electrodes (103), (107), wherein the resistance variable layer (106) has a first region comprising a first oxygen-deficient tantalum oxide having a composition represented by TaOx (0
Abstract:
An initialization method of the present invention is a method for initializing a material (variable-resistance material) (2) whose resistance value increases/decreases according to the polarity of an applied electric pulse. An electric pulse having a first polarity is applied at least once between first and second electrodes (1, 3) connected to the variable-resistance material (2) such that the potential of the first electrode is higher than that of the second electrode.
Abstract:
A first variable resistor (5) is connected between a first terminal (7) and a third terminal (9) and increases/reduces its resistance value in accordance with the polarity of a pulse voltage applied between the first terminal (7) and the third terminal (9). A second variable resistor (6) is connected between the third terminal (9) and a second terminal (8) and increases/reduces its resistance value in accordance with the polarity of a pulse voltage applied between the third terminal (9) and the second terminal (8). Given pulse voltages are applied between the first terminal (7) and the third terminal (9) and between the third terminal (9) and the second terminal (8) to reversibly change the resistance values of the first and second variable resistors (5, 6), thereby recording one bit or multiple bits of information.
Abstract:
A memory element comprises a first electrode, a second electrode, and a resistance variable film 2 which is disposed between the first and second electrodes to be connected to the first and second electrodes, a resistance value of the resistance variable film 2 varying based on voltage applied between the first and second electrodes, the resistance variable film 2 includes a layer 2a made of Fe3O4 and a layer 2b made of Fe2O3 or a spinel structure oxide which is expressed as MFe2O4 (M: metal element except for Fe); and the layer 2a made of Fe3O4 is thicker than the layer 2b made of Fe2O3 or the spinel structure oxide.
Abstract translation:存储元件包括第一电极,第二电极和电阻可变膜2,电阻可变膜2设置在与第一和第二电极连接的第一和第二电极之间,电阻变化膜2的电阻值基于电压变化 电阻可变膜2包括由Fe 3 O 4制成的层2a和由Fe 2 O 3制成的层2b或以MFe 2 O 4表示的尖晶石结构氧化物(M:除了Fe之外的金属元素); 由Fe 3 O 4制成的层2a比由Fe 2 O 3或尖晶石结构氧化物制成的层2b厚。
Abstract:
A magnetic head includes a pair of magnetic core halves; and a nonmagnetic layer provided between the pair of magnetic core halves for combining the pair of magnetic core halves. The pair of magnetic core halves each includes an oxide magnetic base, at least one underlying layer provided on the oxide magnetic base, and a metal magnetic thin film provided between the underlying film and the nonmagnetic layer. The metal magnetic thin film includes a magnetic film containing, as a major material, magnetic crystalline particles having an average volume Va and an average surface area Sa fulfilling the relationship of Sa>about 4.84 Va⅔. At least one of the pair of magnetic core halves has a winding window therein. The metal magnetic thin film is provided in such a manner as to prevent the oxide magnetic base from cracking due to an internal stress generated in the metal magnetic thin film.
Abstract:
A method and apparatus for analysis of magnetic characteristics of a magnetic device used for designing a magnetic head. The magnetic head has recording and reproducing characteristics and a recording and reproducing apparatus of magnetic characteristics. The apparatus for analysis of magnetic characteristics includes a data input part, a coupled analysis part, and a result output part. The data input part is provided with data related to the characteristics of substances composing the magnetic device, data related to the magnetic device divided into a plurality of parts, data concerning the boundary conditions for analysis of the magnetic device, and data concerning the boundary conditions for analysis of the magnetic field. In the analysis part, a stress distribution for each of the plurality of parts divided on the basis of the data related to the boundary conditions input from the data input part is obtained, and magnetic characteristics for each of the plurality of parts based on the data concerning the boundary conditions of the magnetic field and the stress distribution of the magnetic device are obtained, and magnetic characteristics of the whole magnetic device are obtained based on the magnetic characteristics of each of the plurality of parts.
Abstract:
The method of the invention provides a soft magnetic film having a high saturation magnetic flux density and an anisotropy of high magnetic permeability suitable for use in various types of magnetic heads at a high production yield by use of a sputtering apparatus provided with a sputtering electrode, which has permanent magnets arranged above a target 1 mainly of Fe or Co in such a way that lines of magnetic force 3 generated by said permanent magnets are in parallel to the surface of said target 1 and to the center line of said target 1 and have a magnetic strength pattern symmetric with respect to said center line while the lines of magnetic force to the right of said center line are of a reverse direction to those to the left of said center line.
Abstract:
A metal-in-gap type magnetic head having a small undulation of reproduction output caused by a pseudo-gap and method of manufacture thereof are provided, wherein the magnetic head employs as a back core a ferrite (particularly, a ferrite containing Sn) and employs in a metal portion which constitutes a front core an alloy film (particularly, a composition transition alloy film) having a composition expressed by T-M-X-N, where T is at least one metal element selected from a group consisting of Fe, Co and Ni, M is at least one metal element selected from a group consisting of Nb, Zr, Ti, Ta, Hf, Cr, Mo, W and Mn, X is at least one metalloid element selected from a group consisting of B, Si and Ge, and N is nitrogen.
Abstract:
A nonvolatile memory element comprises a first electrode layer (103), a second electrode (107), and a resistance variable layer (106) which is disposed between the first electrode layer (103) and the second electrode layer (107), a resistance value of the resistance variable layer varying reversibly according to electric signals having different polarities which are applied between the electrodes (103), (107), wherein the resistance variable layer (106) has a first region comprising a first oxygen-deficient tantalum oxide having a composition represented by TaOx (0
Abstract:
A memory element comprises a first electrode, a second electrode, and a resistance variable film 2 which is disposed between the first and second electrodes to be connected to the first and second electrodes, a resistance value of the resistance variable film 2 varying based on voltage applied between the first and second electrodes, the resistance variable film 2 includes a layer 2a made of Fe3O4 and a layer 2b made of Fe2O3 or a spinel structure oxide which is expressed as MFe2O4 (M: metal element except for Fe); and the layer 2a made of Fe3O4 is thicker than the layer 2b made of Fe2O3 or the spinel structure oxide.
Abstract translation:存储元件包括第一电极,第二电极和电阻可变膜2,电阻可变膜2设置在与第一和第二电极连接的第一和第二电极之间,电阻变化膜2的电阻值基于电压变化 电阻可变膜2包括由Fe 3 O 4制成的层2a和由Fe 2 O 3制成的层2b或以MFe 2 O 4表示的尖晶石结构氧化物(M:除了Fe之外的金属元素); 由Fe 3 O 4制成的层2a比由Fe 2 O 3或尖晶石结构氧化物制成的层2b厚。