摘要:
The charging current value in the first trickle charge after the rapid charge is differentiated from the charging current value in the second and subsequent trickle charge. Thus, for example, in the first trickle charge, charging can be performed with the charging current value required to simultaneously activate and charge an inactive battery. In the second and subsequent trickle charge, charging can be performed with the charging current value required to compensate for self-discharge of a rechargeable battery. By charging the battery with the charging current value required to compensate for self-discharge of the battery in the second and subsequent trickle charge, power consumption required to charge the battery can be reduced, compared to the case where the trickle charge is continued with a constant charging current value required to simultaneously activate and charge the inactive battery, as the conventional device.
摘要:
An organic molecular memory of an embodiment includes a first conductive layer, a second conductive layer, and an organic molecular layer interposed between the first conductive layer and the second conductive layer, the organic molecular layer including charge-storage molecular chains or variable-resistance molecular chains, the charge-storage molecular chains or the variable-resistance molecular chains including fused polycyclic groups.
摘要:
A pattern forming material contains a block copolymer or graft copolymer and forms a structure having micro polymer phases, in which, with respect to at least two polymer chains among polymer chains constituting the block copolymer or graft copolymer, the ratio between N/(Nc−No) values of monomer units constituting respective polymer chains is 1.4 or more, where N represents total number of atoms in the monomer unit, Nc represents the number of carbon atoms in the monomer unit, No represents the number of oxygen atoms in the monomer unit.
摘要:
A nonvolatile semiconductor memory device of an embodiment includes: a semiconductor layer; a tunnel insulating film that is formed on the semiconductor layer and includes a first organic molecular film including first organic molecules each having an alkyl molecular chain as the main chain; a charge storage layer formed on the tunnel insulating film, the charge storage layer being made of an inorganic material; a block insulating film formed on the charge storage layer; and a control gate electrode formed on the block insulating film.
摘要:
A storage device includes: a plurality of first electrode wirings; a plurality of second electrode wirings which cross the first electrode wirings; a via plug which is formed between the second electrode wiring and the two adjacent first electrode wirings, and in which a maximum diameter of a bottom surface opposing the first electrode wirings in a direction vertical to a direction in which the first electrode wirings stretch is smaller than a length corresponding to a pitch of the first electrode wiring plus a width of the first electrode wirings; a first storage element which is formed between the via plug and one of the two first electrode wirings; and a second storage element which is formed between the via plug and the other one of the two first electrode wirings.
摘要:
A nonvolatile semiconductor memory device of an embodiment includes: a semiconductor layer; an organic molecular layer formed on the semiconductor layer, the organic molecular layer including a plurality of organic molecules, each of the organic molecules includes a tunnel insulating unit of alkyl chain having one end bonded to the semiconductor layer, a charge storing unit, and a bonding unit configured to bond the other end of the alkyl chain to the charge storing unit; a block insulating film formed on the organic molecular layer; and a gate electrode formed on the block insulating film.
摘要:
A nonvolatile semiconductor storage device includes a semiconductor layer, a first insulating film formed on the semiconductor layer, a charge storage layer formed on the first insulating film and having fine metal grains, a second insulating film formed on the charge storage layer, and a gate electrode formed on the second insulating film. During a write operation, a differential voltage is applied across the gate electrode and the semiconductor layer to place the gate electrode at a lower voltage than the semiconductor layer and cause a positive electric charge to be stored in the charge storage layer.
摘要:
Under a control by a controller (14), a rechargeable electric device makes a full charge display to display on a display unit (15) that a secondary battery (11) is fully charged, after a start of charging the secondary battery (11) in a case where either when a count value of a counter reaches a first predetermined value (C1) corresponding to the full charge of the secondary battery (11), or when a duty ratio of switching signals which make an on/off control of a switching element (131) becomes smaller than or equal to a predetermined value (D) corresponding to the charge current obtained at a time of the full charge of the secondary battery (11).
摘要:
A molded case housing each part is configured of a case main body (54) and a cover (55) placed on an upper portion of the case main body, the case main body (54) is configured of a bottom portion case (56) that forms a bottom portion of a circuit breaker and an intermediate case (57), placed on an upper portion of the bottom portion case, having a dividing wall that blocks off a space between the intermediate case and the bottom portion case. A power source side terminal block (3) and second movable contact (4) are fitted inside the bottom portion case, and a first movable contact (5), the load side terminal block (9), the contact portion (52), and the arc extinguishing chamber (6) are fitted inside the intermediate case.
摘要:
The present invention provides such a formation method that an antireflection structure having excellent antireflection functions can be formed in a large area and at small cost. Further, the present invention also provides an antireflection structure formed by that method. In the formation method, a base layer and particles placed thereon are subjected to an etching process. The particles on the base layer serve as an etching mask in the process, and hence they are more durable against etching than the base layer. The etching rate ratio of the base layer to the particles is more than 1 but not more than 5. The etching process is stopped before the particles disappear. It is also possible to produce an antireflection structure by nanoimprinting method employing a stamper. The stamper is formed by use of a master plate produced according to the above formation method.