Abstract:
A circuitized substrate which includes at least one circuit layer and at least one substantially solid dielectric layer comprised of a dielectric composition which includes a cured resin material and a predetermined percentage by weight of particulate fillers, but not including continuous or semi-continuous fibers as part thereof.
Abstract:
An information handling system which includes as part thereof a circuitized substrate comprising a first layer comprised of a dielectric material including a resin material including a predetermined quantity of particles therein and not including continuous fibers, semi-continuous fibers or the like as part thereof, and at least one circuitized layer positioned on the dielectric first layer.
Abstract:
A circuitized substrate which includes a conductive paste for providing electrical connections. The paste, in one embodiment, includes a metallic component including nano-particles and may include additional elements such as solder or other metal micro-particles, as well as a conducting polymer and organic. The particles of the paste composition sinter and, depending on what additional elements are added, melt as a result of lamination to thereby form effective contiguous circuit paths through the paste. A method of making such a substrate is also provided, as is an electrical assembly utilizing the substrate and including an electronic component such as a semiconductor chip coupled thereto.
Abstract:
A dielectric composition which forms a dielectric layer usable in circuitized substrates such as PCBs, chip carriers and the like. As such a layer, it includes a cured resin material and a predetermined percentage by weight of particulate fillers, thus not including continuous fibers, semi-continuous fibers or the like as part thereof.
Abstract:
A method of making a circuitized substrate including a composite layer including a first dielectric sub-layer including a plurality of fibers having a low coefficient of thermal expansion and a second dielectric sub-layer of a low moisture absorptivity resin, the second dielectric sub-layer not including continuous or semi-continuous fibers or the like as part thereof. The substrate further includes at least one electrically conductive layer as part thereof.
Abstract:
A circuitized substrate comprising a first layer comprised of a dielectric material including a low moisture absorptive polymer resin in combination with a nodular fluoropolymer web encased within the resin, the resulting dielectric layer formed from this combination not including continuous or semi-continuous fibers as part thereof. The substrate further includes at least one circuitized layer positioned on the dielectric first layer. An electrical assembly and a method of making the substrate are also provided, as is an information handling system (e.g., computer) incorporating the circuitized substrate of the invention as part thereof.
Abstract:
A circuit assembly that includes a circuitized substrate having a dielectric interior layer with a first surface and at least one hole therein. A filler material substantially fills the hole within the dielectric interior layer. A first wiring layer is positioned on the first surface of the dielectric interior layer, wherein the first wiring layer substantially covers the hole and assists in retaining the filler material within the hole in the dielectric interior layer. A first dielectric photoresist layer is positioned on the first wiring layer and on the first surface of the dielectric interior layer. The first dielectric photoresist layer also includes at least one hole therein. The filler material also substantially fills the hole within the first dielectric photoresist layer. A second wiring layer is positioned on the first dielectric photoresist layer and includes a plurality of conductive pads as part thereof. At least one external component can be electrically coupled to the conductive pads of the second wiring layer.
Abstract:
The present invention permits solder joints to be made directly to via and through holes without the solder being wicked into the vias or through holes, by filling plated through holes with an epoxy or cyanate fill composition. When cured and overplated, the fill composition provides support for the solder joint and provides a flat solderable surface for the inter-connection. In certain embodiments, the cured fill compositions, offer a further advantage of being conductive. The invention also relates to several novel methods for filling through holes with such fill compositions, and to resistors located in through holes and vias.
Abstract:
The invention involves a fluid treatment device and fluid treatment method to solution or melt coat or impregnate a resin or polymer to a predetermined, metered thickness into a substrate. The invention is effective in impregnating or coating various substrates in both a continuous or batch process on one side, two sides, or in the case of a porous substrate, penetration and complete saturation is possible. The invention offers significant advantages and benefits over existing methods and equipment and allows the coating or impregnation process to be performed at lower cost and higher efficiency with increased environmental safety.
Abstract:
A method of making a printed circuit board in which conductive thru-holes are formed within two dielectric layers of the board's structure so as to connect designated conductive layers. One hole connects two adjacent layers and the other connects two adjacent layers, including one of the conductive layers connected by the other hole. It is also possible to connect all three conductive layers using one or more holes. The resulting holes may be filled, e.g., with metal plating, or conductive or non-conductive paste. In the case of the latter, it is also possible to provide a top covering conductive layer over the paste, e.g., to serve as a pad or the like on the board's external surface.