Abstract:
In general, techniques are described for selectively applying and reusing filters stored in a router. In one example, a method includes receiving a network access request from a first user. The method also includes selecting a candidate rule group associated with the packet flow, wherein the candidate rule group comprises one or more currently deployed rules of an existing rule group on the computing device that are currently installed within a forwarding plane and are being applied by the forwarding plane to network traffic associated with a second user. The method also includes installing a new rule group comprising the one or more currently deployed rules of the existing rule group and one or more new rules associated with the first user and not currently installed within a forwarding plane. The method also includes applying each rule of the new rule group to network traffic associated with the first user.
Abstract:
In general, the invention is directed to techniques for breaking out mobile data traffic from a mobile service provider network to a packet data network. For example, as described herein, a breakout gateway device (BGW) receives a first service request and data traffic for a data session associated with the requested service from a mobile device in a radio access network, wherein the first service request is addressed to a serving node of a mobile core network of the mobile service provider network, and wherein the data traffic is destined for the PDN. A control packet analysis module forwards the first service request from the breakout gateway device to the serving node. A breakout module of the BGW bypasses the serving node by sending the data traffic from the breakout gateway device to the PDN on a data path from the radio access network to the PDN.
Abstract:
In general, techniques are described for decentralizing handling of subscriber sessions within a gateway device of a mobile network. A mobile network gateway comprises a data plane having a plurality of forwarding components to receive session requests from a mobile service provider network in which the mobile network gateway resides. A control plane comprises a plurality of distributed subscriber management service units coupled by a switch fabric to the data plane. Each of the subscriber management service units serve as anchors for communication sessions for mobile devices that are accessing one or more packet data network by the mobile service provider network. A request delegation module within each of the forwarding components directs the session requests to the subscriber management service units unit to provide management services for the sessions requested by the mobile device.
Abstract:
Path information is obtained in a VPLS-based network by generating special Layer 2 frames (referred to herein as “trace-request frames”), performing source MAC filtering to identify the trace-request frames, and generating a special frame (referred to herein as a “trace-reply frame”) when the source MAC filtering identifies a trace-request frame. Upon identifying a trace-request frame, path information is collected and embedded into the trace-reply frame. The trace-reply frame is then sent to the originating node where the path information is used to learn the path that the trace-request frame traversed. By sending multiple trace-request frames with different source MAC addresses, path information received from source MAC filtering at different nodes in the VPLS-based network can be collected and used to learn an entire path of interest.
Abstract:
In general, techniques are described that facilitate scalable wholesale layer two (L2) connectivity between customers and service providers and a demarcation between the L2 wholesale network and one or more ISPs with which customers communicate L2 PDUs. In one example, a network device receives PDU having both a service identifier identifying a service virtual local area network (SVLAN) and a customer identifier identifying a customer VLAN (CVLAN). A virtual switch determines whether an entry of a L2 learning table is associated with both the service identifier and the customer identifier of the PDU. When no such entry exists, a VLAN learning module updates the L2 learning table to create a new entry that maps to a network device interface and is associated with both the service identifier of the PDU and a plurality of customer identifiers that includes the customer identifier of the PDU.
Abstract:
In general, techniques are described for selectively applying and reusing filters stored in a router. In one example, a method includes receiving a network access request from a first user. The method also includes selecting a candidate rule group associated with the packet flow, wherein the candidate rule group comprises one or more currently deployed rules of an existing rule group on the computing device that are currently installed within a forwarding plane and are being applied by the forwarding plane to network traffic associated with a second user. The method also includes installing a new rule group comprising the one or more currently deployed rules of the existing rule group and one or more new rules associated with the first user and not currently installed within a forwarding plane. The method also includes applying each rule of the new rule group to network traffic associated with the first user.
Abstract:
A device includes one or more network interfaces to receive layer two (L2) communications from an L2 network having a plurality of L2 devices; and a control unit to forward the L2 communications in accordance with forwarding information defining a plurality of flooding next hops. Each of the flooding next hops stored by the control unit specifies a set of the L2 devices within the L2 network to which to forward L2 communications in accordance with a plurality of trees, where each of the trees has a different one of the plurality of L2 devices as a root node. The control unit of the device computes a corresponding one of flooding next hops for each of the trees using only a subset of the trees without computing all of the trees having all of the different L2 network devices as root nodes.
Abstract:
Path information is obtained in a VPLS-based network by generating special Layer 2 frames (referred to herein as “trace-request frames”), performing source MAC filtering to identify the trace-request frames, and generating a special frame (referred to herein as a “trace-reply frame”) when the source MAC filtering identifies a trace-request frame. Upon identifying a trace-request frame, path information is collected and embedded into the trace-reply frame. The trace-reply frame is then sent to the originating node where the path information is used to learn the path that the trace-request frame traversed. By sending multiple trace-request frames with different source MAC addresses, path information received from source MAC filtering at different nodes in the VPLS-based network can be collected and used to learn an entire path of interest.
Abstract:
In general, techniques are described for handling errors in subscriber session management within mobile networks. A downstream mobile gateway comprising a forwarding unit and a service unit may implement the techniques. The forwarding unit receives a packet that includes a destination address for a subscriber and a tunnel endpoint identifier (TEID). The service unit determines whether the TEID is associated with one of a number of subscriber records that store session data for current sessions associated with subscriber devices to communicate with the mobile network. In response to determining that the TEID is not associated with one of the subscriber records, the service unit generates a message that includes the TEID and the destination address and indicates that the downstream mobile gateway has determined that the TEID is not associated with one of the subscriber records. The forwarding unit then sends the message to the upstream mobile gateway.
Abstract:
A method and apparatus for connecting multiple customer sites over a wide area network (WAN) using an overlay network is described. In one embodiment of the invention, each one of multiple customer edge (CE) routers establishes a Border Gateway Protocol (BGP) session with one or more BGP route reflectors and announces their private IP network prefixes and one or more transport IP addresses to reach that CE router. The BGP route reflector(s) reflect those IP network prefixes and the one or more transport IP addresses to reach that specific CE router to the other CE routers. The CE routers receive those reflected IP network prefixes and the corresponding transport IP address(es) to reach that CE router in which those IP network prefixes belong and register them in their corresponding routing/forwarding data structures. In this way, the CE routers learn how to reach each other.