Abstract:
An access node is configured to adapt uplink power control procedures based on the device attributes of a wireless device. The device attributes may, for example be the mobility, energy profile, or characteristic traffic pattern of the wireless device. The adaptive uplink power control procedure may be used to minimize or reduce power consumption, to improve resource utilization efficiency, or to reduce interference levels.
Abstract:
A node (100; 300) of a mobile network is responsible for scheduling transmissions of data blocks between the mobile network and a terminal device (200, 200′). The node (100; 300) may for example be a base station (100) or a control node (300) of the mobile network. The node (100; 300) determines a processing time required by the terminal device (200; 200′) for processing signals for transmission of one of the data blocks. The processing time is determined from a plurality of supported processing times. On the basis of the determined processing time, the node (100; 300) schedules the transmission of the data block. The terminal device (200, 200′) may provide control data for determining the processing time to the node (100; 300).
Abstract:
Methods and apparatus for allocating time-frequency resources to mobile terminals in a wireless communications system in which time-frequency resources may be selectively used according to a first multiple-input multiple-output (MIMO) transmission scheme or a second MIMO transmission scheme that differs from the first MIMO transmission scheme. An exemplary method comprises, for at least a first scheduling instance, identifying a first group of mobile terminals corresponding to the first MIMO transmission scheme and a second group of mobile terminals corresponding to the second MIMO transmission scheme, allocating time-frequency resources in a first pre-determined time-frequency zone exclusively to mobile terminals belonging to the first group, and allocating time-frequency resources in one or more additional pre-determined time-frequency zones to one or more mobile terminals belonging to the second group. This method may be implemented in a base station of a WiMAX system, for example.
Abstract:
A convolutional encoder (50) comprises an expurgation unit (22) and a first component convolutional encoder section (24). A convolutional turbo encoder (20) comprises an expurgation unit (22); a first component convolutional encoder section (24); a second component convolutional encoder section (26); and an interleaver (28). For both the convolutional encoder (50) and the expurgating convolutional turbo encoder (20) the expurgation unit (22) inserts predetermined values at selected bit positions of an input bit sequence and thereby provide an expurgated input bit sequence. A lower rate convolutional code is obtained from a higher rate code via expurgation.
Abstract:
The iterative decoding of blocks may be continued or terminated based on CRC checks. In an example embodiment, one iteration of an iterative decoding process is performed on a block whose information bits are covered by a CRC. The iterative decoding process is stopped if the CRC checks for a predetermined number of consecutive iterations. In another example embodiment, a decoding iteration is performed on a particular sub-block of multiple sub-blocks of a transport block, which includes a single CRC over an entirety of the transport block. The CRC is checked using decoded bits obtained from the decoding iteration on the particular sub-block and decoded bits obtained from previous decoding iterations on other sub-blocks of the multiple sub-blocks. The decoding iteration is then performed on a different sub-block if the CRC does not check. Also, the decoding iterations for the sub-blocks may be terminated if the CRC checks.
Abstract:
A system and method for finding a wireless local area network, WLAN, when a mobile terminal is connected to a cellular network. A position associated with each WLAN operating within the coverage area of the cellular network is stored in a database. At predefined intervals or conditions, the system determines a current position of the mobile terminal, and determines whether the current position of the mobile terminal is close enough to a stored WLAN position for the mobile terminal to connect to the WLAN corresponding to the stored WLAN position. If so, a notification is sent to the mobile terminal indicating that the mobile terminal is within range of the identified WLAN. The mobile terminal then scans for the identified WLAN.
Abstract:
A wireless telecommunications network supplies a semi-persistent resource that a wireless station can use for special purposes (such as a retransmission of packets for ARQ purposes or a control signal. The semi-persistent resource can be allocated by the system to other terminals if, e.g., a retransmission is not required. Since a retransmission is generally performed in response to a NACK received from a base station, the NACK may itself serve as a token that permits the wireless station to use the semi-persistent allocation. Thus, the technology includes, e.g., a method for resource allocation on a semi-persistent basis and efficient signaling for the usage of such allocation.
Abstract:
A radio access network (RAN) (20) comprise a base station (28) and a wireless terminal (30). The base station 28 comprises a transceiver (38) and a frame handler (40), the wireless terminal (30) comprises a transceiver (48) and a wireless terminal frame handler (50). The frame handlers (40, 50) handle a enhanced frame F having enhanced frame structure. At least a downlink portion of the frame is formatted and handled in a manner whereby the frame can be perceived as a first format type of frame if the wireless terminal is a first type of wireless terminal and perceived as an enhanced or second format type of frame if the wireless terminal is a second type of wireless terminal. The frame handler configures the frame as plural subframes, each subframe having a downlink burst followed by an uplink burst. The frame is preferably configured to afford the second type of wireless terminal sufficient time to develop an acknowledgement for a message transmitted in a downlink burst, the acknowledgement being sent to the base station in an uplink burst which is within one frame length of the message.
Abstract:
A wireless telecommunications network supplies a semi-persistent resource that a wireless station can use for special purposes (such as a retransmission of packets for ARQ purposes or a control signal. The semi-persistent resource can be allocated by the system to other terminals if, e.g., a retransmission is not required. Since a retransmission is generally performed in response to a NACK received from a base station, the NACK may itself serve as a token that permits the wireless station to use the semi-persistent allocation. Thus, the technology includes, e.g., a method for resource allocation on a semi-persistent basis and efficient signaling for the usage of such allocation.
Abstract:
A convolutional encoder (50) comprises an expurgation unit (22) and a first component convolutional encoder section (24). A convolutional turbo encoder (20) comprises an expurgation unit (22); a first component convolutional encoder section (24); a second component convolutional encoder section (26); and an interleaver (28). For both the convolutional encoder (50) and the expurgating convolutional turbo encoder (20) the expurgation unit (22) inserts predetermined values at selected bit positions of an input bit sequence and thereby provide an expurgated input bit sequence. A lower rate convolutional code is obtained from a higher rate code via expurgation.