Abstract:
Provided is a memory device including first to third selection lines extending in a first direction and sequentially arranged in a second direction crossing the first direction, multiple sets of first to third vertical pillars, each set coupled with a corresponding one of the first to third selection lines and sequentially arranged in the second direction, a first sub-interconnection connecting the third vertical pillar coupled with the first selection line to the first vertical pillar coupled with the second selection line, a second sub-interconnection connecting the third vertical pillar coupled with the second selection line to the first vertical pillar coupled with the third selection line, and bit lines extending in the second direction and connected to corresponding ones of the first and second sub-interconnections.
Abstract:
A non-volatile memory device includes gate electrodes stacked on a substrate, a semiconductor pattern penetrating the gate electrodes and connected to the substrate, and a charge storage layer between the semiconductor pattern and the gate electrodes. The charge storage layer includes a first charge storage layer between the semiconductor pattern and the gate electrodes, a second charge storage layer between the first charge storage layer and the semiconductor pattern, and a third charge storage layer between the first charge storage layer and the gate electrodes. An energy band gap of the first charge storage layer is smaller than those of the second and third charge storage layers. The first charge storage layer is thicker than the second and third charge storage layers.
Abstract:
A semiconductor device may include gate structures spaced apart above a top surface of a substrate. The gate structures may include a horizontal electrode extending in a first direction parallel with the top surface of a substrate. An isolation insulating layer may be disposed between the gate structures. A plurality of cell pillars may penetrate the horizontal electrode and connect to the substrate. The plurality of cell pillars may include a minimum spacing defined by a shortest distance between any two of the plurality of cell pillars. The thickness of the horizontal electrode may be greater than the minimum spacing of the cell pillars.
Abstract:
A method of fabricating a semiconductor device, comprising: forming a plurality of memory cell strings; coupling an interconnection to at least two of the memory cell strings; and coupling a bitline to the interconnection. The interconnection includes a body extending along a first direction and a protrusion protruding from the body along a second direction.
Abstract:
Methods of manufacturing vertical semiconductor devices may include forming a mold structure including sacrificial layers and insulating interlayers with a first opening formed therethrough. The sacrificial layers and the insulating interlayers may be stacked repeatedly and alternately on a substrate. The first opening may expose the substrate. Blocking layers may be formed by oxidizing portions of the sacrificial layers exposed by the first opening. A first semiconductor layer pattern, a charge trapping layer pattern and a tunnel insulation layer pattern, respectively, may be formed on the sidewall of the first opening. A second semiconductor layer may be formed on the first polysilicon layer pattern and the bottom of the first opening. The sacrificial layers and the insulating interlayers may be partially removed to form a second opening. The sacrificial layers may be removed to form grooves between the insulating interlayers. Control gate electrodes may be formed in the grooves.
Abstract:
According to example embodiments of inventive concepts, a semiconductor memory devices includes: a plurality of memory blocks that each include a plurality of stack structures, global bit lines connected in common to the plurality of memory blocks, block selection lines configured to control electrical connect between the global bit lines and one of the plurality of memory blocks, and vertical selection lines configured to control electrical connected between the global bit lines and one of the plurality of stack structures. Each of the plurality of stack structures includes a plurality of local bit lines, first vertical word lines and second vertical word lines crossing first sidewalls and second sidewalls respectfully of the plurality of stack structures, first variable resistive elements between the plurality of stack structures and the first vertical word lines, and second variable resistive elements between the plurality of stack structures and the second vertical word lines.
Abstract:
Provided are three-dimensional semiconductor devices. A device includes an electrode structure including conductive patterns sequentially stacked on a substrate, a semiconductor pattern penetrating the electrode structure and including channel regions adjacent to the conductive patterns and vertical adjacent regions between the channel regions, and a semiconductor connecting layer extending from an outer sidewall of the semiconductor pattern to connect the semiconductor pattern to the substrate.
Abstract:
Nonvolatile memory devices include a plurality of nonvolatile memory cell transistors having respective channel regions within a semiconductor layer formed of a first semiconductor material and respective source/drain regions formed of a second semiconductor material, which has a smaller bandgap relative to the first semiconductor material. The source/drain regions can form non-rectifying junctions with the channel regions. The source/drain regions may include germanium (e.g., Ge or SiGe regions), the semiconductor layer may be a P-type silicon layer and the source/drain regions of the plurality of nonvolatile memory cell transistors may be P-type germanium or P-type silicon germanium.
Abstract:
Provided is a method of operating a nonvolatile memory device to perform an erase operation. The method includes applying a composite pulse including a direct current (DC) pulse and a DC perturbation pulse to the nonvolatile memory device to perform the erase operation.
Abstract:
Provided is a semiconductor device. The semiconductor device includes a substrate, a tunnel insulating layer, a charge storage pattern, a blocking layer, a gate electrode. The tunnel insulating layer is disposed over the substrate. The charge storage pattern is disposed over the tunnel insulating layer. The charge storage pattern has an upper surface, a sidewall, and an edge portion between the upper surface and the sidewall. The blocking layer includes an insulating pattern covering the edge portion of the charge storage pattern, and a gate dielectric layer covering the upper surface, the sidewall, and the edge portion of the charge storage pattern. The gate electrode is disposed over the blocking layer, the gate electrode covering the upper surface, the sidewall, and the edge portion of the charge storage pattern.