Abstract:
This device for detecting electromagnetic radiation, in particular X-ray or γ-rays, includes: a sensing layer consisting of at least one material capable of interacting with said electromagnetic radiation to be detected, in order to liberate mobile charge carriers, whereof the movement generates an electric current; a substrate provided with a plurality of elementary collectors of the charge carriers thus liberated, said elementary collectors being distributed discretely; a transfer layer suitable for transferring the charge carriers liberated by the sensing layer at the elementary collectors, said layer being connected to the sensing layer; and an insulating adhesive mating layer, suitable for mating the plurality of elementary collectors and the transfer layer.
Abstract:
This hybrid circuit comprises a substrate (20) and at least one elementary circuit (22) which comprises a first facet and a second facet, being hybridized via this second facet to a facet of the substrate. According to the invention, this facet of the substrate and each elementary circuit are coated with a first layer (24), the first layer is removed from the first facet of this elementary circuit, this first facet and the subsisting part of the first layer are coated with a second layer (28), and this subsisting part and the second layer covering it are removed. Application to obtaining an antireflection or metal layer on a chip.
Abstract:
This device for detecting electromagnetic radiation, in particular X-ray or γ-rays, includes: a sensing layer consisting of at least one material capable of interacting with said electromagnetic radiation to be detected, in order to liberate mobile charge carriers, whereof the movement generates an electric current; a substrate provided with a plurality of elementary collectors of the charge carriers thus liberated, said elementary collectors being distributed discretely; a transfer layer suitable for transferring the charge carriers liberated by the sensing layer at the elementary collectors, said layer being connected to the sensing layer; and an insulating adhesive mating layer, suitable for mating the plurality of elementary collectors and the transfer layer.
Abstract:
A method for obtaining layers defined on a hybrid circuit. The hybrid circuit including a substrate and at least one elementary circuit that includes a first facet and a second facet, being hybridized via the second facet to a facet of the substrate. This facet of the substrate and each elementary circuit are coated with a first layer, the first layer is removed from the first facet of the elementary circuit, the first facet and the subsisting part of the first layer are coated with a second layer, and the subsisting part and the second layer covering it are removed. Such a method may, for example, find application to obtaining an antireflection or metal layer on a chip.
Abstract:
A radiation detector which senses two wave bands and a process for making this detector. A first substrate includes a first photodetection element sensitive to a first wave band. A second substrate contains a second photodetection element which is sensitive to a second wave band. The second substrate is transparent to at least the first wave band. The two photodetection elements are positioned facing each other. The substrates are interconnected by conductive spheres.