Abstract:
A method is disclosed involving receiving GPS data from a personal portable training device. A smoothing operation is performed on the GPS data to generate a more accurate representation of the route travelled for display to a user (504). In the smoothing operation, a cubic spine algorithm is used to obtain an initial estimate of the route representation (500). The estimate is then subjected to a refinement using at least received user motion data recorded by the personal training device (502). In addition one or more of: data indicative of the GPS accuracy; historical route data; and digital map data, such as building footprints and bodies of water, may be used in refining the estimate.
Abstract:
A method of reducing the spatial resolution of images is disclosed. At least one embodiment of the method includes: —acquiring an input image including image parts having a spatial resolution larger than SR pixels/meter; —acquiring a depth map associated with the input image; —determining for each pixel p(x,y) a spatial resolution value by means of the depth map; —processing a region of pixels of the input image for which holds that the spatial resolution value is larger than a predefined threshold corresponding to SR pixels/meter to obtain a corresponding region of pixels having a spatial resolution smaller then or equal to SR pixels/meter in an output image. The method enables to removes privacy information from images by reducing the spatial resolution to a level that the privacy information cannot be recognized in the image anymore.
Abstract:
A method of identifying a planar object in source images is disclosed. In at least one embodiment, the method includes: retrieving a first source image obtained by a first terrestrial based camera; retrieving a second source image obtained by a second terrestrial based camera; retrieving position data associated with the first and second source image; retrieving orientation data associated with the first and second source image; performing a looking axis rotation transformation on the first and second source image by use of the associated position data and orientation data to obtain first and second intermediate images, wherein the first and second intermediate images have an identical looking axis; performing a radial logarithmic space transformation on the first and second intermediate images to obtain first and second radial logarithmic data images; detecting an area in the first image potentially being a planar object; comparing the potential planar object having similar dimensions in the second radial logarithmic data image and similar rgb characteristics; and finally, identifying the area as a planar object and determining its position. At least one embodiment of the method enables the engineer to detect very efficiently planar perpendicular objects in subsequent images.
Abstract:
An embodiment of the present invention discloses a method of producing road information for use in a map database including: acquiring a source image from an image sequence obtained by means of a terrestrial based camera mounted on a moving vehicle; determining a road color sample from pixels associated with a predefined area in the source image representative of the road surface in front of or behind the moving vehicle; generating a road surface image from the source image in dependence of the road color sample; and, producing road information in dependence of the road surface image and position and orientation data associated with the source image.
Abstract:
A computer arrangement is disclosed, including a processor and a memory that stores a computer program, object data originating from a first source and including object location data, and laser samples originating from a second source, including a sub-set of laser samples relating to the object and including laser sample location data as to each laser sample. In at least one embodiment, the processor compares the object location data and the laser sample location data of the sub-set of laser samples, and matches the object location data to the laser sample location data of the sub-set of laser samples based on this comparison, and thereby corrects for relative positional errors between the first and second sources of location data. The object may be a building façade, for example.
Abstract:
This invention relates to a method for updating digital maps and for matching global navigation devices to a digital map. Such navigation devices rely upon GPS signals (20, 24) from satellites (22, 26). One well-documented cause of position error in navigation devices arises from the phenomenon of GPS multi-path. It has been observed that GPS multi-path errors in the latitude/longitude direction are highly correlated with errors in altitude. By comparing altitude value of GPS probe data with reference specifications for altitude, unreliable probe data (outliers) can be easily identified and culled. Such techniques can be used as well by a mobile navigation device to confirm a match to a particular road segment and if not revert to other positioning techniques such as inertial guidance systems and the like. If the local altitude is not reliably known, an estimation can be derived directly from the collected probe data.
Abstract:
A method of reducing the spatial resolution of images is disclosed. At least one embodiment of the method includes: —acquiring an input image including image parts having a spatial resolution larger than SR pixels/meter; —acquiring a depth map associated with the input image; —determining for each pixel p(x,y) a spatial resolution value by means of the depth map; —processing a region of pixels of the input image for which holds that the spatial resolution value is larger than a predefined threshold corresponding to SR pixels/meter to obtain a corresponding region of pixels having a spatial resolution smaller then or equal to SR pixels/meter in an output image. The method enables to removes privacy information from images by reducing the spatial resolution to a level that the privacy information cannot be recognized in the image anymore.
Abstract:
A computer arrangement is disclosed, including a processor that can communicate with a memory. The memory stores a computer program that can be run by the processor, and stores a set of laser scan samples including a sub-set of laser scan samples relating to a façade of a building and stores location data as to each laser scan sample. The memory also stores a picture of the same façade including location data as to pixels of the picture. The picture includes data as to a wall of the façade and data as to texture elements in the wall. In at least one embodiment, the processor automatically identifies the wall and the texture elements in the picture while using the laser scan samples.
Abstract:
A method of detecting objects from terrestrial based mobile mapping data is disclosed, wherein the terrestrial based mobile mapping data has been captured by way of a terrestrial based mobile mapping vehicle driving on a road having a driving direction, the mobile mapping data including laser scanner data, source images obtained by at least one camera and position and orientation data of the vehicle, wherein the laser scanner data includes laser points, each laser point having associated position and orientation data, and each source image comprises associated position and orientation data. In at least one embodiment, the method includes: retrieving a position and orientation of the vehicle; filtering the laser scanner data in dependence of the position and orientation of the vehicle to obtain laser points corresponding to regions of interest; retrieving a source image associated with the position and orientation of the vehicle; mapping the laser points corresponding to regions of interest to image coordinates of the source image to generate a recognition mask; combining the recognition mask and the source image to obtain candidate 3D images representative of possible objects within the regions of interest; and, detecting a group of objects from the candidate 3D images. By combining image recognition and laser scanner recognition the detection rate can be increased to a very high percentage, thereby substantially reducing human effort. Furthermore, the generating of regions of interest in the laser data, enables a significant reduction of the processing power and/or the processing time needed to detect the objects in the images.
Abstract:
A method of processing camera data of a mobile mapping system is disclosed. In at least one embodiment, the method includes a) obtaining camera data from at least one camera of the mobile mapping system, b) detecting at least one region in the camera data, c) applying a compression technique on the camera data in a first region, and d) obtaining range sensor data from at least a first range sensor. The range sensor data may at least partially correspond to the camera data. Also, in at least one embodiment, b) includes using the range sensor data to identify the at least one region in the camera data.