Abstract:
The disclosure describes a process for dehalogenation of chlorofluorocompounds. The process comprises contacting a saturated chlorofluorocompound with hydrogen in the presence of a catalyst at a temperature sufficient to remove chlorine and/or fluorine substituents to produce a fluorine containing terminal olefin.
Abstract:
A dehydrochlorination process is disclosed. The process involves contacting RfCHClCH2Cl with a carbon catalyst in a reaction zone to produce a product mixture comprising RfCCl═CH2, wherein Rf is a perfluorinated alkyl group.
Abstract:
The present disclosure provides a fluorination process which involves reacting a hydrohaloalkene of the formula RfC—Cl═CH2 with HF in a reaction zone in the presence of a fluorination catalyst selected from the group consisting of TaF5 and TiF4 to produce a product mixture containing a hydrohaloalkane of the formula RfCFClCH3, wherein Rf is a perfluorinated alkyl group.
Abstract:
Disclosed herein are blowing agents comprising fluorocarbons and/or hydrofluorocarbons useful in foamable compositions. Also disclosed are methods for forming a foam comprising the aforementioned blowing agents.
Abstract:
The present invention relates to compositions comprising at least one fluoroolefin and an effective amount of stabilizer that may be an epoxide, fluorinated epoxide or oxetane, or a mixture thereof with other stabilizers. The stabilized compositions may be useful in cooling apparatus, such as refrigeration, air-conditioning, chillers, and heat pumps, as well as in applications as foam blowing agents, solvents, aerosol propellants, fire extinguishants, and sterilants.
Abstract:
Disclosed is a process for the manufacture of 2,3,3,3-tetrafluoropropene comprising: (a) contacting 1,1,1,2,3-pentafluoropropane with a catalyst comprised of chromium (III) oxide having a surface area of at least 150 m2/g and having an alkali metal loading of at least 7 milligrams of alkali metal per 100 square meters of catalyst surface area, to produce a product mixture comprising 2,3,3,3-tetrafluoropropene and hydrogen fluoride; and (b) recovering said 2,3,3,3-tetrafluoropropene from the product mixture produced in (a).
Abstract:
A process is disclosed for making 1,1,1,4,4,4-hexafluoro-2-butene. The process involves reacting 2,2-dichloro-1,1,1-trifluoroethane with copper in the presence of an amide solvent and 2,2′-bipyridine. A process is also disclosed for making 1,1,1,4,4,4-hexafluoro-2-butene. The process involves reacting 2,2-dichloro-1,1,1-trifluoroethane with copper in the presence of an amide solvent and a Cu(I) salt. A process is further disclosed for making 1,1,1,4,4,4-hexafluoro-2-butene. The process involves reacting 2,2-dichloro-1,1,1-trifluoroethane with copper in the presence of an amide solvent, 2,2′-bipyridine and a Cu(I) salt.
Abstract:
The present disclosure relates to compositions comprising at least one fluoroolefin and an effective amount of a stabilizer comprising at least one thiol or thioether, or mixtures thereof. The stabilized compositions may be useful in cooling apparatus, such as refrigeration, air-conditioning, chillers and heat pumps, as well as in applications as foam blowing agents, solvents, aerosol propellants, fire extinguishants, and sterilants.
Abstract:
This invention relates to cleaning compositions comprising unsaturated fluorinated hydrocarbons. The invention further relates to use of said cleaning compositions in methods to clean, degrease, deflux, dewater, and deposit fluorolubricant. The invention further relates to novel unsaturated fluorinated hydrocarbons and their use as cleaning compositions and in the methods listed above.
Abstract:
Disclosed herein are propellants comprising fluorocarbons and/or hydrofluorocarbons. Also disclosed are sprayable compositions comprising the propellants.