Abstract:
A baseband processing module according to the present invention includes a multi-path scanner module. The multi-path scanner module is operable to receive timing and scrambling code information regarding an expected multi-path signal component of a WCDMA signal. Then, the multi-path scanner module is operable to identify a plurality of multi-path signal components of the WCDMA signal by descrambling, despreading and correlating a known symbol pattern of/with a baseband RX signal within a search window. The multi-path scanner module is operable to determine timing information for the plurality of multi-path signal components of the WCDMA signal found within the search window and to pass this information to a coupled rake receiver combiner module.
Abstract:
A wireless terminal is operable to receive a Wideband Code Division Multiple Access (WCDMA) signal from a base station and includes clock circuitry, a wireless interface, and a Primary Synchronization (PSYNC) module. The clock circuitry generates a wireless terminal clock using a wireless terminal oscillator. The wireless interface receives the WCDMA signal, which is produced by the base station using a base station clock that is produced using a base station oscillator that is more accurate than the wireless terminal oscillator. The PSYNC module includes a plurality of PSYNC correlation branches. Each PSYNC correlation branch phase rotates the WCDMA signal based upon a respective frequency offset, correlates the phase rotated WCDMA signal with a Primary Synchronization Channel (PSCH) code over a plurality of sampling positions, and produces PSYNC correlation energies based upon the correlations for each of the plurality of sampling positions.
Abstract:
A wireless terminal is operable to receive a Wideband Code Division Multiple Access (WCDMA) signal from a base station and includes clock circuitry, a wireless interface, and a Primary Synchronization (PSYNC) module. The clock circuitry generates a wireless terminal clock using a wireless terminal oscillator. The wireless interface receives the WCDMA signal, which is produced by the base station using a base station clock that is produced using a base station oscillator that is more accurate than the wireless terminal oscillator. The PSYNC module includes a plurality of PSYNC correlation branches. Each PSYNC correlation branch phase rotates the WCDMA signal based upon a respective frequency offset, correlates the phase rotated WCDMA signal with a Primary Synchronization Channel (PSCH) code over a plurality of sampling positions, and produces PSYNC correlation energies based upon the correlations for each of the plurality of sampling positions.
Abstract:
A Radio Frequency (RF) receiver includes a RF front end and a baseband processing module coupled to the RF front end that is operable to receive a time domain signal that includes time domain training symbols and time domain data symbols. The baseband processing module includes a channel estimator operable to process the time domain training symbols to produce a time domain channel estimate, a Fast Fourier Transformer operable to convert the time domain channel estimate to the frequency domain to produce a frequency domain channel estimate, a weight calculator operable to produce frequency domain equalizer coefficients based upon the frequency domain channel estimate, an Inverse Fast Fourier Transformer operable to converting the frequency domain equalizer coefficients to the time domain to produce time domain equalizer coefficients, and an equalizer operable to equalize the time domain data symbols using the time domain equalizer coefficients.
Abstract:
A baseband processing module according to the present invention includes a multi-path scanner module. The multi-path scanner module is operable to receive timing and scrambling code information regarding an expected multi-path signal component of a WCDMA signal. Then, the multi-path scanner module is operable to identify a plurality of multi-path signal components of the WCDMA signal by descrambling, despreading and correlating a known symbol pattern of/with a baseband RX signal within a search window. The multi-path scanner module is operable to determine timing information for the plurality of multi-path signal components of the WCDMA signal found within the search window and to pass this information to a coupled rake receiver combiner module.
Abstract:
A Radio Frequency (RF) receiver includes a RF front end and a baseband processing module coupled to the RF front end that is operable to receive a time domain signal that includes time domain training symbols and time domain data symbols. The baseband processing module includes a channel estimator operable to process the time domain training symbols to produce a time domain channel estimate, a Fast Fourier Transformer operable to convert the time domain channel estimate to the frequency domain to produce a frequency domain channel estimate, a weight calculator operable to produce frequency domain equalizer coefficients based upon the frequency domain channel estimate, an Inverse Fast Fourier Transformer operable to converting the frequency domain equalizer coefficients to the time domain to produce time domain equalizer coefficients, and an equalizer operable to equalize the time domain data symbols using the time domain equalizer coefficients.
Abstract:
A baseband processing module for use within a Radio Frequency (RF) transceiver includes a downlink/uplink interface, TX processing components, a processor, memory, RX processing components, and a turbo decoding module. The RX processing components receive a baseband RX signal from the RF front end, produce a set of IR samples from the baseband RX signal, and transfer the set of IR samples to the memory. The turbo decoding module receives a set of IR samples from the memory, forms a turbo code word from the set of IR samples, turbo decodes the turbo code word to produce inbound data, and outputs the inbound data to the downlink/uplink interface. The turbo decoding module performs metric normalization based upon a chosen metric, performs de-rate matching on the set of IR samples, performs error detection operations, and extracts information from a MAC packet that it produces.
Abstract:
A Radio Frequency (RF) receiver includes a RF front end and a baseband processing module coupled to the RF front end that is operable to receive a time domain signal that includes time domain training symbols and time domain data symbols. The baseband processing module includes a channel estimator operable to process the time domain training symbols to produce a time domain channel estimate, a Fast Fourier Transformer operable to convert the time domain channel estimate to the frequency domain to produce a frequency domain channel estimate, a weight calculator operable to produce frequency domain equalizer coefficients based upon the frequency domain channel estimate, an Inverse Fast Fourier Transformer operable to converting the frequency domain equalizer coefficients to the time domain to produce time domain equalizer coefficients, and an equalizer operable to equalize the time domain data symbols using the time domain equalizer coefficients.
Abstract:
A wireless terminal is operable to receive a Wideband Code Division Multiple Access (WCDMA) signal from a base station and includes clock circuitry, a wireless interface, and a Primary Synchronization (PSYNC) module. The clock circuitry generates a wireless terminal clock using a wireless terminal oscillator. The wireless interface receives the WCDMA signal, which is produced by the base station using a base station clock that is produced using a base station oscillator that is more accurate than the wireless terminal oscillator. The PSYNC module includes a plurality of PSYNC correlation branches. Each PSYNC correlation branch phase rotates the WCDMA signal based upon a respective frequency offset, correlates the phase rotated WCDMA signal with a Primary Synchronization Channel (PSCH) code over a plurality of sampling positions, and produces PSYNC correlation energies based upon the correlations for each of the plurality of sampling positions.
Abstract:
A baseband processing module for use within a Radio Frequency (RF) transceiver includes a downlink/uplink interface, TX processing components, a processor, memory, RX processing components, and a turbo decoding module. The RX processing components receive a baseband RX signal from the RF front end, produce a set of IR samples from the baseband RX signal, and transfer the set of IR samples to the memory. The turbo decoding module receives a set of IR samples from the memory, forms a turbo code word from the set of IR samples, turbo decodes the turbo code word to produce inbound data, and outputs the inbound data to the downlink/uplink interface. The turbo decoding module performs metric normalization based upon a chosen metric, performs de-rate matching on the set of IR samples, performs error detection operations, and extracts information from a MAC packet that it produces.