Abstract:
Systems for multiple use subchannels are provided. In one embodiment, a bidirectional communication system comprises: a first remote unit for communicating with a host using OFDM, the host communicatively coupled to a plurality of remote units in a multipoint-to-point configuration. The first remote unit is configured to transmit up to a plurality of tones, the up to a plurality of tones modulated with upstream information using OFDM, the first remote unit including a modulator for modulating the up to a plurality of tones using OFDM. The modulator is configured to adjust a carrier frequency and timing of the plurality of tones such that when any tones are transmitted from the first remote unit and at least one other remote unit, the orthogonality of the tones when received at the host unit is improved. Both control data and payload data are transmitted on a first tone of the plurality of tones.
Abstract:
Systems and methods for orthogonal frequency division multiplexing are provided. In one embodiment, a multi-carrier modem comprises a receiver configured to receive a waveform comprising a plurality of spectrally overlapping carrier signals from at least two of a plurality of remote units, wherein the plurality of spectrally overlapping carrier signals are modulated using an inverse Fourier transform algorithm; and a processor coupled to the receiver, wherein the processor applies a Fourier transform algorithm to demultiplex upstream data modulated onto the waveform by the at least two of a plurality of remote units
Abstract:
Systems and methods for orthogonal frequency division multiplexing are provided. In one embodiment, a multi-carrier modem comprises: a receiver configured to receive a waveform comprising a plurality of spectrally overlapping carrier signals from at least two of a plurality of remote units, wherein the plurality of spectrally overlapping carrier signals are modulated using an inverse Fourier transform algorithm; a transmitter; a processor coupled to the transmitter, wherein the processor outputs data for transmission to the transmitter, wherein the processor applies an inverse Fourier transform algorithm to the data provided to the transmitter; a controller programmed to instruct the transmitter to transmit a predetermined identifier on at least one of the spectrally overlapping carrier signals, the predetermined identifier identifying to a first remote unit a range of the plurality of spectrally overlapping carrier signals for the first remote unit to receive control information.
Abstract:
The communication system includes a hybrid fiber/coax distribution network. A head end provides for downstream transmission of telephony and control data in a first frequency bandwidth over the hybrid fiber/coax distribution network and reception of upstream telephony and control data in a second frequency bandwidth over the hybrid fiber/coax distribution network. The head end includes a head end multicarrier modem for modulating at least downstream telephony information on a plurality of orthogonal carriers in the first frequency bandwidth and demodulating at least upstream telephony information modulated on a plurality of orthogonal carriers in the second frequency bandwidth. The head end further includes a controller operatively connected to the head end multicarrier modem for controlling transmission of the downstream telephony information and downstream control data and for controlling receipt of the upstream control data and upstream telephony information. The system further includes service units, each service unit operatively connected to the hybrid fiber/coax distribution network for upstream transmission of telephony and control data in the second frequency bandwidth and for receipt of the downstream control data and telephony in the first frequency bandwidth. Each service unit includes a service unit multicarrier modem for modulating at least the upstream telephony information on at least one carrier orthogonal at the head end terminal to another carrier in the second frequency bandwidth and for demodulating at least downstream telephony information modulated on at least a band of a plurality of orthogonal carriers in the first frequency bandwidth. Each service unit also includes a controller operatively connected to the service unit multicarrier modem for controlling the modulation of and demodulation performed by the service unit multicarrier modem. A method of monitoring communication channels, a distributed loop method for adjusting transmission characteristics to allow for transmission of data in a multi-port to point communication system, a polyphase filter technique for providing ingress protection and a scanning method for identifying frequency bands to be used for transmission by service units are also included. Also provided is a method and apparatus for performing a Fast Fourier Transform (FFT). In one embodiment, a scalable FFT system is built using a novel dual-radix butterfly core.
Abstract:
An apparatus and method for generating a broadcast waveform is provided which, for generating an in-phase component, includes an in-phase digital signal generator; a first filter for filtering the in-phase digital signal; a first digital-to-analog converter for converting the filtered digital signal into a first analog signal; an AM baseband signal generator producing an AM baseband signal; a first summer for summing the first analog and AM baseband signals to produce a composite analog signal; and a first modulator for modulating the composite analog signal with a first carrier signal at a transmission frequency, thus producing a first modulated signal. To provide the quadrature component of the broadcast waveform, the waveform generator includes a quadrature digital signal generator producing a quadrature digital signal; a second digital-to-analog converter for converting the quadrature digital signal into a second analog signal; a second modulator for modulating the second base-band signal with a second carrier signal; and a second summer for summing the first and second modulated signals, thus producing the broadcast waveform. The apparatus improves the signal-to-noise ratio in analog AM receivers, especially at higher frequencies.
Abstract:
A coherent signal detector for extracting analog and digital information from a received AM-compatible digital broadcast waveform is provided. The waveform can have an in-phase component and a quadrature component. The detector can include a down converter for shifting the in-phase and quadrature components in phase, frequency, or both, in response to a phase word, thereby providing a recovered in-phase output and a recovered quadrature output. The signal detector also includes an integration circuit for integrating a portion of the recovered quadrature output over a first preselected time interval, which can be one digital time frame.
Abstract:
An equalizer is provided for enhancing the recoverability of digital audio broadcasting signal information. The equalizer receives the AM compatible digital audio broadcasting waveform and stores that waveform as a waveform vector. The equalizer then processes that waveform by multiplying the waveform vector by an equalization vector. This equalization vector comprises a plurality of equalizer coefficients, each of the coefficients initially set to a predetermined value. The equalizer then compares each location of the processed waveform vector with a stored waveform vector. The equalizer selects as the signal that vector location closest to the stored waveform vector. Preferably, the equalizer includes means for updating the equalizer coefficients using the waveform vector, the processed waveform vector, and the stored waveform vector to provide immunity to noise.
Abstract:
Bit timing references are derived at a receiver for a carrier modulated by OQPSK. A carrier is transmitted with a constant reference phase modulation during a first interval. During a subsequent, second interval the carrier is transmitted with rotational phase modulation representing binary bit values so that orthogonal components phase modulate the carrier with a predetermined bit sequence. A receiver responds to the constant phase modulated carrier to lock the frequency and phase of a phase lock loop oscillator of a carrier recovery loop. Synchronization at the receiver is achieved in response to a reception of the rotational phase modulation, while maintaining the frequency and phase lock. A carrier recovery loop of the receiver is activated to a decision directed operation after bit synchronization has been achieved. Decision directed operation is achieved by sampling and comparing components derived in orthogonal channels of the carrier recovery loop while the receiver is responsive to the rotational phase modulation. The bandwidth of a filter used in achieving bit synchronization is reduced after there has been a decay of transients in the carrier tracking loop resulting from a transition between locking of the loop and initiation of the decision directed operation. Then the bandwidth of a filter in the carrier tracking loop is adjusted as a function of the quality of the received rotational modulated suppressed carrier.
Abstract:
Systems and methods for orthogonal frequency division multiplexing are provided. In one embodiment, a multi-carrier modem comprises: a receiver configured to de-modulate symbols from at least one of a plurality of spectrally overlapping carrier signals to produce a receiver output; a transmitter configured to modulate symbols onto at least one of a plurality of the spectrally overlapping carrier signals; a processor coupled to the transmitter, wherein the processor outputs data for transmission by the transmitter, wherein the processor applies an inverse Fourier transform to the data transmitted by the transmitter; the processor coupled to the receiver, wherein the processor applies a Fourier transform to the receiver output; and a controller programmed to instruct the transmitter to transmit at least one symbol representing a request for bandwidth allocation on a first carrier; wherein the controller is further programmed to determine when a collision has occurred on the first carrier.
Abstract:
Systems and methods for orthogonal frequency division multiplexing are provided. In one embodiment, a multi-carrier modem comprises: a transmitter configured to modulate symbols onto at least one of a plurality of the spectrally overlapping carrier signals; a processor coupled to the transmitter, wherein the processor outputs data for transmission by the transmitter, wherein the processor applies an inverse Fourier transform to the data transmitted by the transmitter; the processor modulating a first carrier of the plurality of spectrally overlapping carrier signals based on a first modulation scheme while modulating a second carrier of the plurality of spectrally overlapping carrier signals based on a second modulation scheme.