Abstract:
This invention is directed to direct write printed reflective features comprising metallic particles and/or metallic nanoparticles. Preferably, the reflective feature are formed by a direct-writing printing process, e.g., a piezo-electric, thermal, drop-on-demand or continuous ink jet printing process, using an ink comprising metallic particles, e.g., metallic nanoparticles. The invention is also directed to inks suitable for printing such reflective features using a direct write printing process and to processes for making such reflective features.
Abstract:
A metal nanoparticle composition for the fabrication of conductive features. The metal nanoparticle composition advantageously has a low viscosity permitting deposition of the composition by direct-write tools. The metal nanoparticle composition advantageously also has a low conversion temperature, permitting its deposition and conversion to an electrical feature on polymeric substrates.
Abstract:
Glass powders and methods for producing glass powders. The powders preferably have a small particle size, narrow size distribution and a spherical morphology. The method includes forming the particles by a spray pyrolysis technique. The invention also includes novel devices and products formed from the glass powders.
Abstract:
A precursor composition for the deposition and formation of an electrical feature such as a conductive feature. The precursor composition advantageously has a low viscosity enabling deposition using direct-write tools. The precursor composition also has a low conversion temperature, enabling the deposition and conversion to an electrical feature on low temperature substrates. A particularly preferred precursor composition includes copper metal for the formation of highly conductive copper features.
Abstract:
Provided are palladium-containing powders and a method and apparatus for manufacturing the palladium-containing particles of high quality, of a small size and narrow size distribution. An aerosol is generated from liquid feed and sent to a furnace, where liquid in droplets in the aerosol is vaporized to permit formation of the desired particles, which are then collected in a particle collector. The aerosol generation involves preparation of a high quality aerosol, with a narrow droplet size distribution, with close control over droplet size and with a high droplet loading suitable for commercial applications. Powders may have high resistance to oxidation of palladium. Multi-phase particles are provided including a palladium-containing metallic phase and a second phase that is dielectric. Electronic components are provided manufacturable using the powders.
Abstract:
Provided are silver-containing powders and a method and apparatus for manufacturing the silver-containing particles of high quality, of a small size and narrow size distribution. An aerosol is generated from liquid feed and sent to a furnace, where liquid in droplets in the aerosol is vaporized to permit formation of the desired particles, which are then collected in a particle collector. The aerosol generation involves preparation of a high quality aerosol, with a narrow droplet size distribution, with close control over droplet size and with a high droplet loading suitable for commercial applications.
Abstract:
Provided is an aerosol method, and accompanying apparatus, for preparing powdered products of a variety of materials involving the use of an ultrasonic aerosol generator (106) including a plurality of ultrasonic transducers (120) underlying and ultrasonically energizing a reservoir of liquid feed (102) which forms droplets of the aerosol. Carrier gas (104) is delivered to different portions of the reservoir by a plurality of gas delivery ports (136) delivering gas from a gas delivery system. The aerosol is pyrolyzed to form particles, which are then cooled and collected. The invention also provides powders made by the method and devices made using the powders.
Abstract:
Photovoltaic conductive features and processes for forming photovoltaic conductive features are described. The process comprises (a) depositing a composition onto at least a portion of a substrate, wherein the composition comprises metal-containing particles having a primary particle size of from about 10 nanometers to less than 500 nanometers and including a continuous or non-continuous coating of a ceramic material; and (b) heating the composition such that the precursor composition forms at least a portion of a photovoltaic conductive feature. The metal-containing particles are preferably produced by flame spraying.
Abstract:
The invention relates to a reflective feature, e.g., reflective security feature or reflective decorative feature, comprising a first element at least partially coplanar with a second element. The first element causes incident light to be reflected with a first intensity that varies as the angle of incidence changes relative to a surface of the reflective feature. The invention also relates to a direct write printing process for forming such a reflective feature from an ink comprising metallic nanoparticles.
Abstract:
Materials that are useful for absorption enhanced reforming (AER) of a fuel, including absorbent materials and catalyst materials, and methods for using such materials for the conversion of carbon-based fuels to a H2-rich product gas. The materials can be fabricated by spray processing. The use of the materials in AER can produce a H2 product gas having a high H2 content and a low level of carbon oxides. The method for converting carbon-based fuels to a H2-rich product gas includes forming an intermediate gas product from the carbon-based fuel using a catalyst and contacting the intermediate gas product with an absorbent to absorb CO2. The absorbent can be regenerated while retaining a high absorption capacity.
Abstract translation:可用于包括吸收材料和催化剂材料的燃料的吸收增强重整(AER)的材料以及用于将碳基燃料转化为富二醇的产物的方法 加油站。 这些材料可以通过喷雾加工制成。 在AER中使用这些材料可以产生具有高H 2 O 2含量和低水平的碳氧化物的H 2 N 2产物气体。 将碳基燃料转化为富H2产物气体的方法包括使用催化剂从碳系燃料形成中间气体产物,并使中间产物与吸收剂接触以吸收CO 2 SUB>。 吸收剂可以在保持高吸收能力的同时再生。