Abstract:
To aim to reduce ripple current flowing through a capacitor in a power converter apparatus including a converter, the capacitor and an inverter. A current sensor 6 is connected between a capacitor 5 and an inverter circuit 7 for detecting current Iinv flowing from the capacitor 5 to the inverter circuit 7. A frequency detecting subunit 11 performs fast Fourier transform on a waveform of the current Iinv to detect a frequency of a frequency component having the largest amplitude. Also, the frequency detecting subunit 12 detects a zero-cross point of the frequency component having the largest amplitude. Then a carrier signal control subunit 13 performs control such that a frequency and a rise time of a PWM carrier signal for driving the converter circuit 4 match the frequency and the zero-cross point that have been detected by the frequency detecting subunit 11 and the phase detecting subunit 12.
Abstract:
A motor drive apparatus receiving power from a power source and driving a motor with independent polyphase systems of excitation coils, comprises: a control circuit and power converters each corresponding to one system, each including an inverter circuit, an interrupter circuit, and a temperature detector, the inverter circuits being connected in series to the power source and, while not short-circuited, supplying power to the excitation coil, wherein the control circuit detects an operating state of the motor, short-circuits the inverter circuits and interrupts the interrupter circuits for a subset of power converters defined according to the operating state, such that a source voltage is supplied to non-short-circuited inverter circuits, and, when a power converter exceeds a predetermined temperature, the control circuit short-circuits the inverter circuit and interrupts the interrupter circuit thereof, and, in another power converter not exceeding the predetermined temperature, operates the inverter circuit and connects the interrupter circuit.
Abstract:
Provided is a synchronous motor including a rotor having magnetic poles distributed circumferentially along a rotation direction of the rotor at equal intervals, and a stator having stator teeth arranged circumferentially along the rotation direction of the rotor, each tooth wound with a stator coil by concentrated winding. Every M consecutive stator teeth belong to one of stator teeth groups arranged at equal intervals. The M consecutive stator teeth in each stator teeth group are arranged at intervals different from the intervals of the magnetic poles of the rotor. The stator coils wound around the M consecutive stator teeth are connected to separate terminals. A motor driver supplies currents of different phases to the stator coils via the respective terminals.
Abstract:
The present invention aims to provide a synchronous motor drive system that is capable of suppressing ripples in current while reducing switching loss. The system includes three-phase inverters 201-203, a control circuit 400 for controlling the operations of the three-phase inverters and a synchronous motor 300 including a plurality of three-phase coils. To control the operations of the three-phase inverters, the control circuit 400 causes the three-phase inverters 201 and 203 and the three-phase inverter 202 to use different carrier frequencies to generate three-phase AC power, and each of the three-phase inverters supplies a different one of the three-phase coils with three-phase AC power.
Abstract:
A gate voltage detecting circuit 201 detects a gate voltage Vgs of a switching device 11, and when the gate voltage is less than a predetermined voltage that is set to be less than a threshold voltage of the switching device 11, outputs an H-level boost instruction signal. A voltage control circuit 103, when the boost instruction signal is at the L level, outputs a predetermined voltage V1 of a control power supply 102 as it is, and when the boost instruction signal is at the H level, outputs a voltage V2 obtained by boosting the predetermined voltage V1. The drive signal output circuit 104 amplifies a voltage of a PWM pulse output from a PWM pulse output circuit 111 to a voltage output from the voltage control circuit 103. Therefore, a drive signal from the drive signal output circuit 104 to the switching device 11 initially becomes the boosted voltage V2 when the PWM pulse goes to the H level, and then becomes the predetermined voltage V1 when the gate voltage Vgs of the switching device 11 increases to a predetermined voltage. Therefore, a switching loss of the switching device can be suppressed.
Abstract:
The present invention provides a camera module including: a lens portion (10) including at least one lens (11); an imaging element (4) having a light-receiving surface that is substantially perpendicular to an optical axis direction of the lens (11); a fixed portion (30) provided on an outer peripheral side of the lens portion (10); a first elastic body (41a) that is provided on a side opposite to the imaging element (4) side with respect to the lens (11) and couples the lens portion (10) and the fixed portion (30); and a second elastic body (41b) that is provided on the imaging element (4) side with respect to the lens (11) and couples the lens portion (10) and the fixed portion (30). The first elastic body (41a) and the second elastic body (41b) have the same shape. The first elastic body (41a) and the second elastic body (41b) are arranged so as to oppose each other while sharing a common central axis. The second elastic body (41b) is arranged so that so that the shape of the second elastic body (41b) is different from a shape of the first elastic body (41a) projected in the optical axis direction of the lens (11).
Abstract:
In a motor and a disk drive apparatus in accordance with the present invention, a position detecting part 30 comprises a detection signal switching circuit 39A, a noise elimination circuit 38 and a detection circuit 39B, and the detection signal switching circuit 39A is configured to output an inverted detection signal obtained by logically inverting a detection signal until the rotation speed reaches a predetermined rotation speed after the beginning of starting or until a position detection pulse signal FG is detected a predetermined number of times; position detection operation is carried out only during the ON operation of PWM, whereby PWM sensorless starting is carried out.
Abstract:
The present invention aims to provide a synchronous motor drive system that is capable of suppressing ripples in current while reducing switching loss. The system includes three-phase inverters 201-203, a control circuit 400 for controlling the operations of the three-phase inverters and a synchronous motor 300 including a plurality of three-phase coils. To control the operations of the three-phase inverters, the control circuit 400 causes the three-phase inverters 201 and 203 and the three-phase inverter 202 to use different carrier frequencies to generate three-phase AC power, and each of the three-phase inverters supplies a different one of the three-phase coils with three-phase AC power.
Abstract:
To aim to reduce ripple current flowing through a capacitor in a power converter apparatus including a converter, the capacitor and an inverter. A current sensor 6 is connected between a capacitor 5 and an inverter circuit 7 for detecting current Iinv flowing from the capacitor 5 to the inverter circuit 7. A frequency detecting subunit 11 performs fast Fourier transform on a waveform of the current Iinv to detect a frequency of a frequency component having the largest amplitude. Also, the frequency detecting subunit 12 detects a zero-cross point of the frequency component having the largest amplitude. Then a carrier signal control subunit 13 performs control such that a frequency and a rise time of a PWM carrier signal for driving the converter circuit 4 match the frequency and the zero-cross point that have been detected by the frequency detecting subunit 11 and the phase detecting subunit 12.
Abstract:
A camera module including: a lens portion including at least one lens; an imaging element; a fixed portion; a first elastic body that is provided on a side opposite to the imaging element side with respect to the lens and couples the lens portion and the fixed portion; and a second elastic body that is provided on the imaging element side with respect to the lens and couples the lens portion and the fixed portion. The first elastic body and the second elastic body have the same shape. The first elastic body and the second elastic body are arranged so as to oppose each other while sharing a common central axis. The second elastic body is arranged so that so that the shape of the second elastic body is different from a shape of the first elastic body projected in the optical axis direction of the lens.