Abstract:
The invention relates to an antenna attached to a vehicle roof glass, i.e. a glass plate fitted in an opening of the roof of a vehicle body such as an automobile body, for receiving FM radio and TV broadcast waves in both the VHF band and the UHF band. Essentially the antenna is comprised of a main element which is a conductive strip attached to the roof glass and bent so as to make a closed plane figure, a feed point attached to the roof glass and a connection line which connects the main element to the feed point and extends parallel or nearly parallel to the longitudinal center axis of the vehicle body. The total length of the main element is from 200 to 1500 mm. For example, the main element makes a rectangle in a central region of the roof glass with two opposite sides of the rectangle parallel to the aforementioned center axis. Optionally the antenna may include an auxiliary element which is a conductive strip attached to the roof glass and connected to the feed point. For example, auxiliary element may be an angled segment which makes two or three sides of a rectangle.
Abstract:
The invention relates to a receiving antenna disposed on or in a vehicle window glass such as the rear window glass or the windshield of an automobile. The antenna comprises, as a principal antenna element, a transparent and conductive film in the shape of a quadrilateral having two substantially parallel sides one of which is at a distance of 15-25 mm from the upper edge of the window glass and the other at a distance of 15-25 mm from the lower edge. The quadrilateral film may be so wide that the remaining two sides thereof extend along the two side edges of the window glass, respectively, at a distance of 15-25 mm from the respective side edges. This is suitable for reception of not only FM radio broadcast waves in the 76-90 MHz or 88-108 MHz band and TV broadcast waves in the 90-222 MHz band but also AM radio broadcast waves. When the antenna is mostly for reception of FM radio broadcast waves and/or TV broadcast waves, it is suitable that the transparent and conductive film is in the shape of a rectangle which is elongate in the direction substantially perpendicular to the upper and lower edges of the window glass and has a lateral width in the range from 50 to 250 mm.
Abstract:
On a vehicle window glass provided with defogging heater strips, such as automobile rear window glass, the invention provides an antenna of improved efficiency for receiving FM and AM radio broadcast waves. In an area left above the heater strips the antenna is constructed of at least three elements each of which is a conductive strip. The first and main element is a T-shaped element with its horizontal part at a short distance from the upper edge of the window glass. On one side of the vertical part of the T-shaped element, the second element extends horizontally from a point on that vertical part. The third element, which is located on the other side of that vertical part, has a primary part which constitutes at least three sides of a horizontally elongate rectangle and a secondary part which extends horizontally from a point on the vertical part of the T-shaped element and connects with the primary part. A lead extends from a side of the rectangle to a feed point. The antenna is coupled with the heater strips by a conductive line which connects with the heater strips and has a horizontal part that makes capacitive coupling with the horizontal part of the T-shaped element.
Abstract:
The invention relates to an antenna disposed on or in a vehicle window glass such as the rear window glass or the windshield of an automobile to receive FM radio and/or TV broadcast waves. A principal element of the antenna is a transparent and conductive film in the shape of a quadrilateral having a horizontal upper side. The conductive film occupies a major and central area of the window glass at a distance not less than 15 mm from each edge of the glass. A feeding bar formed of a strip of a low-resistivity material is attached to the conductive film so as to extend horizontally along at least a portion of the upper side of the conductive film, and a lead connects the feeding bar to a feeding point on the window glass. A good position of the junction point of the lead and the feeding bar is in the middle of the width of the window glass. When the feeding point and the junction point are in a side marginal region of the window glass it is desirable to provide, as an auxiliary antenna element, a conductive strip which extends above and parallel to the feeding bar from the side marginal region to a central region of the glass and is connected to the feeding bar in the side marginal region.
Abstract:
The invention relates to an antenna on a vehicle rear window glass for the reception of FM radio broadcasting and TV broadcasting in both the VHF and UHF bands. The window glass is provided with defogging heater strips, and the antenna uses a space left above the heater strips. The antenna is a combination of a main antenna and a secondary antenna, and every element of the antenna is a conductive strip. The main antenna has at least two horizontally extending primary elements which are parallel to and at a relatively short distance from each other. Each of the primary elements has a length of 300-550 mm and is connected at its one end to the other(s) by a subsidiary element arranged perpendicular to the primary elements. The secondary antenna has a middle part, which is relatively long and extends horizontally, and two extension parts which extend from the two opposite ends of the middle part parallel and close to the two opposite side edges of the window glass, respectively. The middle part is close to the upper edge of the window glass or close to the uppermost heater strip. The secondary antenna is connected to the main antenna by a straight extension of the subsidiary element of the main antenna.
Abstract:
The invention provides an antenna disclosed on or in a vehicle window glass, e.g. an automobile rear window glass, for receiving FM broadcast waves. The antenna has a main element, which extends horizontally from a side marginal region of the glass pane to a middle region but does not intersect the longitudinal center axis of the glass pane, and a phase adjusting element which extends parallel to the main element from the same side marginal region and is connected at its end in the side marginal region to the main element by a perpendicular line. The feed point is connected to an arbitrary point on the perpendicular line. The main element may be folded so as to have at least one horizontally extending turn-back part. The phase adjusting element may extend to the opposite side marginal area of the glass pane and may be folded so as to have a turn-back part which extends horizontally without intersecting the center axis of the glass pane. This antenna is almost non- directional and is high in gain over the entire range of the 76-90 MHz band and the 88-108 MHz band.
Abstract:
The invention provides a vehicle window glass antenna for transmission and reception of ultrashort waves used for mobile phones and/or personal radios. The antenna has a primary antenna which is a combination of at least two vertical (in the sense of perpendicular to a horizontal line) elements and at least two horizontal elements each of which directly connects with at least one of the vertical elements and a secondary antenna which is essentially a horizontally elongate element located in a space between the primary antenna and the lower or upper edge of the window glass. The primary antenna is arranged within a rectangular area having a limited horizontal width and a limited length, and the horizontal element of the secondary antenna has a limited length. The antenna feeder is a coaxial cable, and the primary antenna and the secondary antenna are connected with the inner conductor and the outer conductor of the coaxial cable, respectively. In a preferred embodiment the major part of the primary antenna is in the form of a rectangular grid.
Abstract:
The invention relates to an antenna attached to a vehicle roof glass, i.e. a glass plate fitted in an opening of the roof of a vehicle body, for receiving FM radio and TV broadcast waves in both the VHF band and the UHF band. Essentially the antenna is comprised of a main element which is combination of two linear segments each of which is a conductive strip attached to the roof glass, a feed point attached to the roof glass and a connection line which connects the main element to the feed point and extends parallel or nearly parallel to the longitudinal center axis of the vehicle body. The two linear segments of the main element extend respectively obliquely with respect to the aforementioned center axis and intersect each other. It is suitable that the two linear segments have the same length and bisect each other. Optionally the antenna may include an auxiliary element attached to the roof glass and connected to the feed point. For example, the auxiliary element may be a combination of two linear segments intersecting each other or an angled segment having at least one L-shaped portion.