Abstract:
A vehicle imaging system includes an imaging device that images at least a part of an area around a vehicle; and a visible light attenuation device that attenuates part of visible light that enters the imaging device. The imaging device includes an imaging element that converts both of the infrared light and an infrared ray to electric signals. The imaging device outputs both of image data produced based on the electric signal to which the visible light, which has entered the imaging device without passing through the visible light attenuation device, has been converted, and image data produced based on the electric signal to which the infrared ray, which has passed through the visible light attenuation device, has been converted.
Abstract:
In an electronic apparatus, a first microcomputer is monitored by a second microcomputer, which periodically transmits data relating to a main function to the first microcomputer to be processed. The first microcomputer periodically updates a variable value, performs a predetermined calculation operation whose final result should be a specific fixed value, adds that final result to the updated variable value to obtain a sum value, and transmits the sum value and updated variable value concurrently to the second microcomputer. The second microcomputer determines that the first microcomputer is operating abnormally if the difference between the received sum value and variable value is not equal to the specific fixed value.
Abstract:
A vehicle traveling control system and a vehicle control device whereby markers are detected with reliability and information about a local vehicle is transmitted to a succeeding vehicle. Information collecting unit of a preceding vehicle acquires information about the traveling state of the local vehicle associated therewith and supplies the acquired information to modulating unit. The modulating unit modulates the information supplied thereto and supplies the modulated information to blinking unit. The blinking unit causes the markers to blink in accordance with the information supplied thereto. Imaging unit of the succeeding vehicle acquires images of the markers and supplies the acquired images to specifying unit. The specifying unit specifies the marker images from within the image data output from the imaging unit. Validity determining unit determines validity of the specified marker images. Using the marker images, distance measuring unit measures a distance to the preceding vehicle. Demodulating unit demodulates information superimposed on the markers to reproduce the original information. In accordance with the information obtained from the distance measuring unit and the demodulating unit, control unit controls the traveling state of the local vehicle associated therewith.
Abstract:
A secondary curve, the ends of which coincide with the inner corner and the outer corner of the eye, is determined successively, and the total of the edge values of the pixels overlapping the secondary curve is calculated as an evaluation value. Next, a characteristic curve is generated on the basis of data made up of the calculated evaluation value and the Y-coordinate of the intersection between the secondary curve and a straight line passing through the center of a line segment whose ends coincide with the inner corner and the outer corner of the eye. Then, the reference positions for the upper eyelid and the lower eyelid of the eye are set on the basis of the result of an attempt to detect a pixel group occurring because of the red-eye effect in a search area defined on the basis of peaks in the characteristic curve.
Abstract:
A vehicle-mounted surrounding object recognizing apparatus, comprising: a camera that captures an environment surrounding an own vehicle; and an image processing device; wherein the image processing device is configured to process an image captured by the camera to calculate an index value of a color component with respect to an image portion having a luminance value greater than a predetermined value, and determine whether the image portion is related to a light from a surrounding vehicle based on a relationship between the calculated index value of a color component and a predetermined threshold, and the predetermined threshold is changed according to a lighting status of a forward lighting device of the own vehicle.
Abstract:
A vehicle-mounted surrounding object recognizing apparatus, comprising: a camera that captures an environment surrounding an own vehicle; and an image processing device; wherein the image processing device is configured to process an image captured by the camera to calculate an index value of a color component with respect to an image portion having a luminance value greater than a predetermined value, and determine whether the image portion is related to a light from a surrounding vehicle based on a relationship between the calculated index value of a color component and a predetermined threshold, and the predetermined threshold is changed according to a lighting status of a forward lighting device of the own vehicle.
Abstract:
In an object detection apparatus, a captured image of a scene around a host vehicle, information indicating a travel state of the host vehicle, and information indicating a surrounding situation around the host vehicle are obtained; risk areas in each of which an object is likely to exist, and area risk degrees of the risk areas are estimated based on the obtained information; posture risk degrees of respective postures are estimated based on a relation between each of the risk areas and the postures of the object assumed to exist in the risk area; a window image is extracted from a search range in the captured image, which corresponds to each of the risk areas, according to descending order of overall risk degrees; and it is identified whether the window image is an image showing the object, by comparing an identification model with the window image.
Abstract:
An on-board camera is disposed, behind a neighboring member that is located above a steering column, on the steering column that can move forward at the time of a collision of a vehicle in which the on-board camera is installed. The on-board camera includes: a camera portion; and a support mechanism. The support mechanism supports the camera portion in such a manner that the camera portion can move in a direction away from the neighboring member when the neighboring member and the camera portion are brought into contact with each other because of a forward movement of the steering column at the time of the collision.
Abstract:
Provided is a distance measuring apparatus and a distance measuring method enabling measurement of, based on an image, a relative distance from an object even during nighttime. Included are imaging means for taking an image in a traveling direction of an own-vehicle as a taken image; specifying means for respectively specifying combinations of positions, in the taken image, of direct light which is imaged in the taken image and of a reflected light which is a reflection of the direct light on a travel path surface; and measuring means for measuring a relative distance from an object based on the combinations of the positions of the direct light and the positions of the reflected light, which are specified by the specifying means.
Abstract:
A facial image photographic device for vehicle mounting includes a facial image photographic camera which photographs the face of a driver of a vehicle while the vehicle is running, and a changeover device. The changeover device changes over a utilization environment of the facial image photographic camera between a position in which, when performing photography, the facial image photographic camera can be exposed to direct insolation by sunlight, and a position in which, when not performing photography, at least a part of the facial image photographic camera is not to be exposed to direct insolation by sunlight than when performing photography.