Multi-color charged particle detector apparatus and method of use thereof

    公开(公告)号:US11324973B2

    公开(公告)日:2022-05-10

    申请号:US17016372

    申请日:2020-09-10

    摘要: The invention comprises a method and apparatus for using a multi-layer multi-color scintillation based detector element to image a tumor of a patient using a process of determining residual energies of positively charged particles after passing through the patient, the process comprising the steps of: (1) transmitting the positively charged particles at known energies through the patient and into a multi-layer detector element; (2) detecting first and second secondary photons, resultant from passage of the positively charged particles, respectively from a first layer of a first scintillation material and a second layer of a second scintillation material at two respective layer depths, where the first wavelength range differs from the second wavelength range; (4) determining residual energies of the positively charged particles, using output from the step of detecting; and (5) relating the residual energies to body densities to generate an image.

    Multi-color charged particle detector apparatus and method of use thereof

    公开(公告)号:US10898732B2

    公开(公告)日:2021-01-26

    申请号:US16538648

    申请日:2019-08-12

    摘要: The invention comprises a method and apparatus for using a multi-layer multi-color scintillation based detector element to image a tumor of a patient using a process of determining residual energies of positively charged particles after passing through the patient, the process comprising the steps of: (1) transmitting the positively charged particles at known energies through the patient and into a multi-layer detector element; (2) detecting first and second secondary photons, resultant from passage of the positively charged particles, respectively from a first layer of a first scintillation material and a second layer of a second scintillation material at two respective layer depths, where the first wavelength range differs from the second wavelength range; (4) determining residual energies of the positively charged particles, using output from the step of detecting; and (5) relating the residual energies to body densities to generate an image.

    Multi-color charged particle detector apparatus and method of use thereof

    公开(公告)号:US10532228B2

    公开(公告)日:2020-01-14

    申请号:US15901770

    申请日:2018-02-21

    摘要: The invention comprises a method and apparatus for using a multi-layer multi-color scintillation based detector element to image a tumor of a patient using a process of determining residual energies of positively charged particles after passing through the patient, the process comprising the steps of: (1) transmitting the positively charged particles at known energies through the patient and into a multi-layer detector element; (2) detecting first and second secondary photons, resultant from passage of the positively charged particles, respectively from a first layer of a first scintillation material and a second layer of a second scintillation material at two respective layer depths, where the first wavelength range differs from the second wavelength range; (4) determining residual energies of the positively charged particles, using output from the step of detecting; and (5) relating the residual energies to body densities to generate an image.

    MULTI-COLOR CHARGED PARTICLE DETECTOR APPARATUS AND METHOD OF USE THEREOF

    公开(公告)号:US20180178039A1

    公开(公告)日:2018-06-28

    申请号:US15901770

    申请日:2018-02-21

    摘要: The invention comprises a method and apparatus for using a multi-layer multi-color scintillation based detector element to image a tumor of a patient using a process of determining residual energies of positively charged particles after passing through the patient, the process comprising the steps of: (1) transmitting the positively charged particles at known energies through the patient and into a multi-layer detector element; (2) detecting first and second secondary photons, resultant from passage of the positively charged particles, respectively from a first layer of a first scintillation material and a second layer of a second scintillation material at two respective layer depths, where the first wavelength range differs from the second wavelength range; (4) determining residual energies of the positively charged particles, using output from the step of detecting; and (5) relating the residual energies to body densities to generate an image.

    Relativistic energy compensating cancer therapy apparatus and method of use thereof

    公开(公告)号:US11000705B2

    公开(公告)日:2021-05-11

    申请号:US16218397

    申请日:2018-12-12

    摘要: The invention comprises a method and apparatus for imaging a tumor of a patient with positively charged particles, comprising the steps of: (1) accelerating the positively charged particles to a relativistic energy using an accelerator; (2) transporting the positively charged particles from the accelerator, through a beam transport system, through an output nozzle of the beam transport system, and through the patient to yield a residual particle beam comprising a residual relativistic velocity; (3) determining the residual relativistic velocity using a first time of flight detector and a second time of flight detector separated by a separation distance; and (4) generating a positively charged particle computed tomography image using the residual relativistic velocity, where individual particles in the residual particle beam comprise a second mass of at least 1.02 times that of a first mass of the individual particles prior to the step of accelerating.

    RELATIVISTIC ENERGY COMPENSATING CANCER THERAPY APPARATUS AND METHOD OF USE THEREOF

    公开(公告)号:US20190111284A1

    公开(公告)日:2019-04-18

    申请号:US16218397

    申请日:2018-12-12

    摘要: The invention comprises a method and apparatus for imaging a tumor of a patient with positively charged particles, comprising the steps of: (1) accelerating the positively charged particles to a relativistic energy using an accelerator; (2) transporting the positively charged particles from the accelerator, through a beam transport system, through an output nozzle of the beam transport system, and through the patient to yield a residual particle beam comprising a residual relativistic velocity; (3) determining the residual relativistic velocity using a first time of flight detector and a second time of flight detector separated by a separation distance; and (4) generating a positively charged particle computed tomography image using the residual relativistic velocity, where individual particles in the residual particle beam comprise a second mass of at least 1.02 times that of a first mass of the individual particles prior to the step of accelerating.