摘要:
A method for manufacturing a rectifier with a vertical MOS structure is provided. A first trench structure and a first mask layer are formed at a first side of the semiconductor substrate. A second trench structure is formed in the second side of the semiconductor substrate. A gate oxide layer, a polysilicon structure and a metal sputtering layer are sequentially formed on the second trench structure. The rectifier further includes a wet oxide layer and a plurality of doped regions. The wet oxide layer is formed on a surface of the first multi-trench structure and in the semiconductor substrate. The doping regions are formed on a region between the semiconductor substrate and the second trench structure, and located beside the mask layer. The metal sputtering layer is formed on the first mask layer corresponding to the first trench structure.
摘要:
A trench Schottky diode and its manufacturing method are provided. The trench Schottky diode includes a semiconductor substrate having therein a plurality of trenches, a gate oxide layer, a polysilicon structure, a guard ring and an electrode. At first, the trenches are formed in the semiconductor substrate by an etching step. Then, the gate oxide layer and the polysilicon structure are formed in the trenches and protrude above a surface of the semiconductor substrate. The guard ring is formed to cover a portion of the resultant structure. At last, the electrode is formed above the guard ring and the other portion not covered by the guard ring. The protruding gate oxide layer and the protruding polysilicon structure can avoid cracks occurring in the trench structure.
摘要:
Route planning methods and systems are provided. First, an input corresponding to a specific region is received via an input unit of a personal navigation device. Then, a first predefined location located in the specific region is determined. A first route from a first current position of the device to the first predefined location is planned.
摘要:
An illumination system for providing an illumination beam to a light valve is provided. The illumination system includes a light source, a light integration rod, a color wheel, a first focusing unit and a second focusing unit. The light source is capable of generating the illumination beam, and the light integration rod is disposed on the transmission path of the illumination beam. The first focusing unit is disposed between the integration rod and the color wheel and is capable of focusing the illumination beam onto the color wheel. The second focusing unit is disposed between the color wheel and the light valve and is capable of focusing the illumination beam onto the light valve.
摘要:
A structure of a porous low-k layer is described, comprising a bottom portion and a body portion of the same atomic composition, wherein the body portion is located on the bottom portion, and the bottom portion has a density higher than the density of the body portion. An interconnect structure is also described, including the above porous low-k layer, and a conductive layer filling up a damascene opening in the porous low-k layer.
摘要:
A special mode key match comparison module has N-storage elements and a special mode key match comparator. The N-storage elements accumulate a serial data stream, and then determine whether a digital device should operate in a normal user mode, in a public programming mode, or in a particular private test mode. To reduce the possibility of accidentally decoding a false test or programming mode, the data stream has a sufficiently large number of N-bits to substantially reduce the probability of a false decode. To further reduce the possibility of accidentally decoding a programming or test mode, the special mode key match comparison module may be reset if less or more than N-clocks are detected during the accumulation of the N-bit serial data stream. The special mode key match data patterns may represent a normal user mode, a public programming mode, and particular private manufacturer test modes.
摘要:
An illumination system including at least one first light source, a prism and a light uniforming device is provided. The first light source is capable of providing a first beam. The prism is disposed on a transmission path of the first beam, and has four first facets. Two of the first facets are opposite to each other, and the other two first facets are opposite to each other. The first beam passes through one of the first facets and is totally internally reflected by another first facet opposite to the one of the first facets. The light uniforming device is disposed on the transmission path of the first beam from the another first facet. The cost of the illumination system is lower, and the illumination system has high flexibility of the light source design and can provide illumination with high brightness.
摘要:
An illumination system including at least one first light source, a prism and a light uniforming device is provided. The first light source is capable of providing a first beam. The prism is disposed on a transmission path of the first beam, and has four first facets. Two of the first facets are opposite to each other, and the other two first facets are opposite to each other. The first beam passes through one of the first facets and is totally internally reflected by another first facet opposite to the one of the first facets. The light uniforming device is disposed on the transmission path of the first beam from the another first facet. The cost of the illumination system is lower, and the illumination system has high flexibility of the light source design and can provide illumination with high brightness.
摘要:
A method for manufacturing a multi cap layer includes providing a substrate, forming a multi cap layer comprising a first cap layer and a second cap layer formed thereon on the substrate, forming a patterned metal hard mask layer on the multi cap layer, and performing an etching process to etch the multi cap layer through the patterned hard mask layer and to form an opening in the second cap layer.
摘要:
An integrated circuit device comprising a configurable reference clock output to a peripheral function connection of the integrated circuit device provides a system clock or a frequency divided clock from the system clock as a clock source to a peripheral function on a peripheral function connection of the integrated circuit device. The clock function may be used to generate all necessary clocks for a plurality of integrated circuit devices and may be able to supply a system clock or frequency divided clock from the system clock, either from an external clock oscillator source or from an internally generated system clock, with the option of using a crystal for more accuracy and greater frequency stability. The external clock and/or internal clock may be made available for peripheral devices even when internal logic of the integrated circuit device may be in a standby/sleep mode.