Abstract:
A passive interposer apparatus with a shielded through silicon via (TSV) configuration is disclosed. The apparatus includes a p-doped substrate, wherein at least an upper portion of the p-doped substrate is heavily p-doped. An interlayer dielectric layer (ILD) is disposed over the upper portion of the p-doped substrate. A plurality of through silicon vias (TSVs) are formed through the ILD and the p-doped substrate. A plurality of shielding lines disposed between the TSVs electrically couple respective second metal contact pads to the upper portion of the p-doped substrate.
Abstract:
A method comprises analyzing front side conductive patterns and back side conductive patterns on a semiconductor interposer using a machine implemented RC extraction tool, and outputting data representing a plurality of respective RC nodes from the RC extraction tool to a tangible persistent machine readable storage medium. A substrate mesh model of the semiconductor interposer is generated, having a plurality of substrate mesh nodes. Each substrate mesh node is connected to adjacent ones of the plurality of substrate mesh nodes by respective substrate impedance elements. A set of inputs to a timing analysis tool is formed. The plurality of RC nodes are connected to ones of the plurality of substrate mesh nodes of the substrate mesh model. The set of inputs is stored in a tangible machine readable storage medium.
Abstract:
An interconnection component includes a plurality of through-substrate vias (TSVs) penetrating through a substrate. The plurality of TSVs includes an active TSV having a first end and a second end. The first end of the active TSV is electrically coupled to a signal-providing circuit. The second end of the active TSV is electrically coupled to an additional package component bonded to the interconnection component. The plurality of TSVs further includes a dummy TSV having a first end and a second end, wherein the first end is electrically coupled to the signal-providing circuit, and wherein the second end is open ended.
Abstract:
A method comprises analyzing front side conductive patterns and back side conductive patterns on a semiconductor interposer using a machine implemented RC extraction tool, and outputting data representing a plurality of respective RC nodes from the RC extraction tool to a tangible persistent machine readable storage medium. A substrate mesh model of the semiconductor interposer is generated, having a plurality of substrate mesh nodes. Each substrate mesh node is connected to adjacent ones of the plurality of substrate mesh nodes by respective substrate impedance elements. A set of inputs to a timing analysis tool is formed. The plurality of RC nodes are connected to ones of the plurality of substrate mesh nodes of the substrate mesh model. The set of inputs is stored in a tangible machine readable storage medium.
Abstract:
A passive interposer apparatus with a shielded through silicon via (TSV) configuration is disclosed. The apparatus includes a p-doped substrate, wherein at least an upper portion of the p-doped substrate is heavily p-doped. An interlayer dielectric layer (ILD) is disposed over the upper portion of the p-doped substrate. A plurality of through silicon vias (TSVs) are formed through the ILD and the p-doped substrate. A plurality of shielding lines disposed between the TSVs electrically couple respective second metal contact pads to the upper portion of the p-doped substrate.