Abstract:
A non-return valve, in particular for medical purposes, including a first hose connection housing, a second hose connection housing and a membrane disk which is made from flexible material. The membrane disk is arranged between the two hose connection housings and can be raised up from an annular valve seat in communication with an inlet space which is connected to an inlet passage. A medium-permeable formation which faces the membrane disk is arranged on the inlet side into the inlet space, supporting the membrane disk against overextension in the case of high return pressures.
Abstract:
An apparatus for generating seismic body waves in a hydrocarbon reservoir includes a closed-loop borehole source having a resonant cavity for generating resonant energy, a drive source and a control unit. The drive source injects pressure pulses to the resonant cavity at a predetermined or selectable pressure and frequency. The fluid circulates between the cavity and the drive source in a closed-loop fashion. In another embodiment, the borehole source utilizes a smart or controllable material that is responsive to an applied excitation field. The cavity includes an excitation coil for providing an excitation field that changes a material property of the smart fluid. The control unit is programmed to adjust operating parameters to produce seismic waves having a selected frequency and amplitude. In one embodiment, a control unit adjusts operating parameters in response to measured parameters of interest or surface commands.
Abstract:
Systems and methods for operating upon a mobile communications device. A system and method can be used with data operations with respect to the mobile communications device's memory, wherein the memory has sectors. Data structures are used with the data operations to determine whether a sector contains valid data or to locate a record's pointer in the memory. The data structures can be used for such operations as record creation, record movement, recovery, etc.
Abstract:
An apparatus to protect the mounting area of casing when subsequently attaching a tubular is disclosed. A sleeve that defines a sealed cavity having a loose incompressible material inside covers the mounting location on the casing. The cementing of the casing takes place through the sleeve. After the cementing, the sleeve is drilled out and the incompressible material is removed to the surface with the drill cuttings. A tubular is inserted in the casing and is preferably expanded into sealing contact with the mounting location on the casing. At the end of expansion, the run in shoe on the tubular is retrieved.
Abstract:
An apparatus to protect the mounting area of casing and a locating profile and optionally a sliding sleeve valve and a flow path from the outside of the valve to the annulus when subsequent attachment of an expanded liner is intended and the expanded liner is to be cemented in place. A barrier sleeve, nose, and outer sleeve define a sealed cavity having a loose incompressible material inside that covers the mounting location on the casing. A locating profile and an optional sliding sleeve valve and a flow path from the outside of the valve to the annulus can be provided. The cementing of the casing takes place through the barrier sleeve. After the cementing, the sleeve and nose are drilled out and the incompressible material is removed to the surface with the drill cuttings. A liner is inserted in the casing and is preferably expanded into sealing contact with the mounting location on the casing. After expansion a cement retainer positioned at the bottom of the expanded liner and the sliding sleeve located either above the mounting location of the liner in the casing shoe or in the liner below the mounted top section allow cement to be delivered outside the expanded liner and the displaced wellbore fluid to return into the casing through so that the liner can be cemented. The cement retainer can be delivered with either the liner or the expansion tools to allow expansion and cementing in a single trip. A shifting tool can be run on the expansion string to actuate the sliding sleeve and if necessary to allow for cement to be pumped from the drill string into the annulus through the sliding sleeve. The cement retainer can be milled out in a separate trip.
Abstract:
A microcavity color OLED device, includes at least one light-emitting layer arranged so as to produce light; a reflector and a semi-transparent reflector forming a microcavity structure for resonating the light produced in the at least one light emitting layer; and a color filter element disposed over the microcavity structure including a light-scattering material selected so as to reduce the angular dependence of the light that has passed through the color filter element.
Abstract:
A slip for an expanding hanger or patch is disclosed. The slip is mounted over the hanger body and has an internal profile that nests within a mating profile on the exterior of the hanger. When a compressive force is applied to the hanger, it shrinks longitudinally and as a result the slip is cammed radially to the extent the inside diameter of the surrounding tubing permits. When the swage is advanced, the diameter of the hanger increases forcing the slip into preferably penetrating contact with the inside wall of the surrounding tubular.
Abstract:
A thread for expandable downhole tubular connections is disclosed. The thread on at least one of the pin and box is coated, preferably with an anti-galling compound. During expansion the coating crumbles and the particles in between the threads keep the joint from becoming undone despite longitudinal shrinkage from the expansion or any tendency of the swage to impart a rotational motion on one part of the joint during the expansion process.
Abstract:
A locking device and a method and apparatus are provided for emplacing the locking device within a selected one of a plurality of landing nipples positioned along a well conduit. Each nipple typically includes a seal bore portion having a bore diameter less than the conduit bore diameter and a recessed portion located above the seal bore having a diameter greater than the conduit bore diameter. The locking device includes a housing for retaining a plurality of circumferentially spaced expandable locking dogs. A camming sleeve is axially slidably within the housing and is utilized to support the dogs in one of three selected positions: a retracted position, a partially expanded no-go position, or a fully expanded locked position. The locking device is lowered down the well conduit on a running tool with the dogs in the retracted position until the running tool has passed through the seal bore of the nipple located directly above the selected landing nipple. The running tool is then pulled upwardly until a ratcheting portion of the running tool engages the seal bore portion of the nipple above the target nipple to set the locking dogs to the no-go position. The running tool and the locking device are then lowered further down the tubing until the locking dogs encounter the seal bore of the target landing nipple. At this time, the locking dogs are fully expanded to a locked position within the recessed portion of the target landing nipple. A retrieving tool also is provided.
Abstract:
A photovoltaic cell comprises a first subcell formed of a Group IV semiconductor material, a second subcell formed of a Group II-VI semiconductor material, and a tunnel homojunction interposed between the first and second subcells. A first side of the tunnel homojunction is formed by a first layer that is adjacent to a top surface of the first subcell. The first layer is of a first conductivity type and is comprised of a highly doped Group IV semiconductor material. The other side of the tunnel homojunction is formed by a second layer that adjoins the lower surface of the second subcell. The second layer is of a second conductivity type opposite the first conductivity type and also is comprised of a highly doped Group IV semiconductor material. The tunnel homojunction permits photoelectric series current to flow through the subcells.