Abstract:
Disclosed herein are compositions and methods for modulating the production of a protein in a target cell. The compositions and methods disclosed herein are capable of ameliorating diseases associated with protein or enzyme deficiencies.
Abstract:
Compositions for modulating the expression of a protein in a target cell comprising at least one RNA molecule which comprises at least one modification conferring stability to the RNA, as well as related methods, are disclosed.
Abstract:
The present invention relates to a method of gene or DNA targeting in cells of vertebrate, particularly mammalian, origin. That is, it relates to a method of introducing DNA into primary or secondary cells of vertebrate origin through homologous recombination or targeting of the DNA, which is introduced into genomic DNA of the primary or secondary cells at a preselected site. The present invention further relates to primary or secondary cells, referred to as homologously recombinant (HR) primary or secondary cells, produced by the present method and to uses of the homologously recombinant primary or secondary cells. The present invention also relates to a method of turning on a gene present in primary cells, secondary cells or immortalized cells of vertebrate origin, which is normally not expressed in the cells or is not expressed at significant levels in the cells.
Abstract:
Disclosed herein are novel compounds, pharmaceutical compositions comprising such compounds and related methods of their use. The compounds described herein are useful, e.g., as liposomal delivery vehicles to facilitate the delivery of encapsulated polynucleotides to target cells and subsequent transfection of said target cells, and in certain embodiments are characterized as having one or more properties that afford such compounds advantages relative to other similarly classified lipids.
Abstract:
The present invention provides, among other things, compositions and methods for treatment of Friedrich's Ataxia based on effective targeting of a therapeutic moiety to mitochondria that can substitute for natural FXN protein activity or rescue one or more phenotypes or symptoms associated with frataxin-deficiency. In some embodiments, the present invention provides a targeted therapeutic comprising a therapeutic moiety, which is a polypeptide having an N-terminus and a C-terminus, a mitochondrial targeting sequence associated with the therapeutic moiety at the N-terminus, and a mitochondrial membrane-penetrating peptide associated with the therapeutic moiety at the C-terminus, wherein the therapeutic moiety is targeted to mitochondria upon cellular entry.
Abstract:
The present invention provides, among other things, compositions and methods for treatment of Friedrich's Ataxia based on effective targeting of a therapeutic moiety to mitochondria that can substitute for natural FXN protein activity or rescue one or more phenotypes or symptoms associated with frataxin-deficiency. In some embodiments, the present invention provides a targeted therapeutic comprising a therapeutic moiety, which is a polypeptide having an N-terminus and a C-terminus, a mitochondrial targeting sequence associated with the therapeutic moiety at the N-terminus, and a mitochondrial membrane-penetrating peptide associated with the therapeutic moiety at the C-terminus, wherein the therapeutic moiety is targeted to mitochondria upon cellular entry.
Abstract:
Disclosed herein are novel compounds, pharmaceutical compositions comprising such compounds and related methods of their use. The compounds described herein are useful, e.g., as liposomal delivery vehicles to facilitate the delivery of encapsulated polynucleotides to target cells and subsequent transfection of said target cells, and in certain embodiments are characterized as having one or more properties that afford such compounds advantages relative to other similarly classified lipids.
Abstract:
Disclosed herein are compositions and methods of modulating the expression of gene or the production of a protein by transfecting target cells with nucleic acids. The compositions disclosed herein demonstrate a high transfection efficacy and are capable of ameliorating diseases associated with protein or enzyme deficiencies.
Abstract:
The present invention relates to transfected primary and secondary somatic cells of vertebrate origin, particularly mammalian origin, transfected with exogenous genetic material (DNA) which encodes erythropoietin or an insulinotropin [e.g., derivatives of glucagon-like peptide 1 (GLP-1)], methods by which primary and secondary cells are transfected to include exogenous genetic material encoding erythropoietin or an insulinotropin, methods of producing clonal cell strains or heterogenous cell strains which express erythropoietin or an insulinotropin, methods of gene therapy in which the transfected primary or secondary cells are used, and methods of producing antibodies using the transfected primary or secondary cells. The present invention also includes primary and secondary somatic cells, such as fibroblasts, keratinocytes, epithelial cells, endothelial cells, glial cells, neural cells, formed elements of the blood, muscle cells, other somatic cells, which can be cultured and somatic cell precursors, which have been transfected with exogenous DNA encoding EPO or an insulinotropin, which is stably integrated into their genomes or is expressed in the cells episomally.
Abstract:
Compositions for modulating the expression of a protein in a target cell comprising at least one RNA molecule which comprises at least one modification conferring stability to the RNA, as well as related methods, are disclosed.