Abstract:
A method of using a gaseous environment providing improved control of CMP process. In one embodiment, the method comprises several steps. One step involves placing a semiconductor wafer onto a polishing pad of a CMP machine. A subsequent step dispenses a slurry onto the polishing pad. Another step provides a blanket of gas that displaces the ambient atmosphere surrounding the semiconductor wafer. In another step, the blanket of gas is maintained around the semiconductor wafer during the CMP operation.
Abstract:
An apparatus for reducing interconnect resistance using optimized trench geometry. One embodiment comprises an interconnect line and an interconnect well. The interconnect line, comprised of a conductive material, has a depth and exists in a first circuit layer of a multilayered Integrated Circuit (IC). The interconnect well is coupled to the interconnect line and is insulated from other conductive materials in the first circuit layer, and in the plurality of subsequent adjacent layers. The interconnect well has a depth in said multilayered IC that exceeds said depth of said interconnect line.
Abstract:
An integrated circuit fabrication method begins with semiconductor devices formed on a substrate. A patterned metal layer is deposited on the substrate to connect the semiconductor devices. A nitride layer is deposited over the metal layer and substrate. The nitride layer topography comprises hills located over metal regions and valleys located over non-metal regions. Spin-on-glass (SOG) is deposited over the nitride layer, thereby filling the valleys and covering the hills. The SOG layer and the nitride layer hills are etched back at substantially the same etch rate, using plasma etching, to form a planar surface. An oxide layer is then deposited over the planar surface to encapsulate the semiconductor devices, metal layer, nitride layer and SOG layer. Vias may then be etched through the oxide layer and the nitride layer to expose portions of the underlying metal layer and facilitate upper layer metal connections thereto. A second metal layer is deposited on the oxide layer and the fabrication process continues until the integrated circuit is complete.
Abstract:
Disclosed are techniques to provide an integrated circuit, including the provision of improved integrated circuit isolation structures. The techniques include forming a number of trenches in an integrated circuit substrate to define a number of substrate regions that are to be electrically isolated from one another. A dielectric material is deposited in the trenches by exposure to a high density plasma having a first deposition-to-etch ratio. The high density plasma is adjusted to a second deposition-to-etch ratio greater than the first ratio to accumulate the dielectric material on the substrate after at least partially filling the trenches. A portion of the dielectric material is removed to planarize the workpiece. A number of components, such as insulated gate field effect transistors, may be subsequently formed in the substrate regions between the trenches.
Abstract:
An apparatus for optimizing electrical currents to improve copper plating uniformity on a semiconductor wafer is disclosed. The use of multiple anodes of the embodiment provides for variable electrical currents to the semiconductor wafer, the variable feature of the variable electrical currents compensating for non-uniform electroplating characteristics.
Abstract:
A complementary conditioning system for use in chemical mechanical polishing (CMP). The present invention functions with a CMP machine adapted for polishing a semiconductor wafer having tungsten components fabricated thereon. A polishing pad is mounted on the CMP machine. The polishing pad has a polishing surface configured for polishing the semiconductor wafer and its tungsten components. The performance of the polishing surface is characterized by a polishing efficiency. A complementary end-effector is mounted on the CMP machine. The complementary end-effector is adapted to chemically complement the tungsten components on the semiconductor wafer. The complementary end-effector is further adapted to contact the polishing surface and improve the polishing efficiency by chemically enhancing the polishing surface, thereby obtaining a more efficient removal rate for the chemical mechanical polishing.
Abstract:
Various embodiments of the invention provide systems and methods for semiconductor device fabrication and generation of photomasks for patterning a target layout of line features and large features. Embodiments of the invention are directed towards systems and methods using self-aligned double pattern to define the target layout of line features and large features.
Abstract:
Methods of semiconductor device fabrication are disclosed. An exemplary method includes processes of depositing a first pattern on a semiconductor substrate, wherein the first pattern defines wide and narrow spaces; depositing spacer material over the first pattern on the substrate; etching the spacer material such that the spacer material is removed from horizontal surfaces of the substrate and the first pattern but remains adjacent to vertical surfaces of a wide space defined by the first pattern and remains within narrow a space defined by the first pattern; and removing the first pattern from the substrate. In one embodiment, the first pattern can comprise sacrificial material, which can include, for example, polysilicon material. The deposition can comprise physical vapor deposition, chemical vapor deposition, electrochemical deposition, molecular beam epitaxy, atomic layer deposition or other deposition techniques. According to another embodiment, features for lines and logic device components having a width greater than that of the lines are formed in the spacer material in the same mask layer.
Abstract:
The present invention comprises a customized polishing pad for use in a wafer polishing machine. The polishing pad of the present invention includes a polishing surface integral with the polishing pad. The polishing surface is adapted to frictionally contact a wafer in the polishing machine, thereby polishing the wafer. The polishing surface of the polishing pad includes at least two areas, where each area is adapted to frictionally contact the wafer and achieve a polishing effect specific for that area. A customized polishing effect is achieved by the polishing pad of the present invention when the wafer is selectively moved frictionally against the at least two areas by the wafer polishing machine.
Abstract:
The present invention comprises a customized polishing pad for use in a wafer polishing machine. The polishing pad of the present invention includes a polishing surface integral with the polishing pad. The polishing surface is adapted to frictionally contact a wafer in the polishing machine, thereby polishing the wafer. The polishing surface of the polishing pad includes at least two areas, where each area is adapted to frictionally contact the wafer and achieve a polishing effect specific for that area. A customized polishing effect is achieved by the polishing pad of the present invention when the wafer is selectively moved frictionally against the at least two areas by the wafer polishing machine.