Abstract:
An image detecting method and a system thereof are provided. The image detecting method includes the following steps. An original image is captured. A moving-object image of the original image is created. An edge-straight-line image of the original image is created, wherein the edge-straight-line image comprises a plurality of edge-straight-lines. Whether the original image has a mechanical moving-object image is detected according to the length, the parallelism and the gap of the part of the edge-straight-lines corresponding to the moving-object image.
Abstract:
A pixel region-based image segmentation method is disclosed. When an input image is retrieved, pixels thereof are sequentially scanned row by row. Signs of unmarked pixels of the input image are determined according to region features of neighboring pixels of each pixel and pixel update information is recorded to generate a region sign update data table and a region sign feature data table. The pixels of the input frame are further scanned row by row to retrieve signs of the pixels and region signs of the pixels are determined and updated according to the region sign update data table.
Abstract:
A semiconductor chip assembly includes a semiconductor device, a heat spreader, a conductive trace, an adhesive and a support layer. The heat spreader includes a post, a base, an underlayer and a thermal via. The conductive trace includes a pad and a terminal. The semiconductor device is electrically connected to the conductive trace and thermally connected to the heat spreader. The post extends upwardly from the base into an opening in the adhesive, the base extends laterally from the post, the support layer is sandwiched between the base and the underlayer and the thermal via extends from the base through the support layer to the underlayer. The conductive trace provides signal routing between the pad and the terminal.
Abstract:
In one exemplary embodiment, an object region tracking and picturing module is constructed on a moving platform of a mobile end and a remote control module is constructed on anther platform for an image object region tracking system. The two modules communicate with each other via a digital network for delivering required information. The object region tracking and picturing module uses a real-time image backward search technology to store at least an image frame previously captured on the moving platform into a frame buffer, and start tracking an object region from the position pointed out by the remote control module to a newest image frame captured on the moving platform, then find out a relative position on the newest image frame for the tracked object region.
Abstract:
A method for tracking a moving object is provided. The method detects the moving object in a plurality of continuous images so as to obtain space information of the moving object in each of the images. In addition, appearance features of the moving object in each of the images are captured to build an appearance model. Finally, the space information and the appearance model are combined to track a moving path of the moving object in the images. Accordingly, the present invention is able to keep tracking the moving object even if the moving object leaves the monitoring frame and returns again, so as to assist the supervisor in finding abnormal acts and making following reactions.
Abstract:
Disclosed is a moving object detection apparatus and method by using optical flow analysis. The apparatus includes four modules of image capturing, image aligning, pixel matching, and moving object detection. Plural images are successively inputted under a camera. Based on neighboring images, frame relationship on the neighboring images is estimated. With the frame relationship, a set of warping parameter is further estimated. Based on the wrapping parameter, the background areas of the neighboring images are aligned to obtain an aligned previous image. After the alignment, a corresponding motion vector for each pixel on the neighboring images is traced. The location in the scene of the moving object can be correctly determined by analyzing all the information generated from the optical flow.
Abstract:
A semiconductor chip assembly includes a semiconductor device, a heat spreader, a conductive trace, an adhesive and a support layer. The heat spreader includes a post, a base, an underlayer and a thermal via. The conductive trace includes a pad and a terminal. The semiconductor device is electrically connected to the conductive trace and thermally connected to the heat spreader. The post extends upwardly from the base into an opening in the adhesive, the base extends laterally from the post, the support layer is sandwiched between the base and the underlayer and the thermal via extends from the base through the support layer to the underlayer. The conductive trace provides signal routing between the pad and the terminal.
Abstract:
An apparatus and method for moving object detection computes a corresponding frame difference for every two successive image frames of a moving object, and segments a current image frame of the two successive image frames into a plurality of homogeneous regions. At least a candidate region is further detected from the plurality of homogeneous regions. The system gradually merges the computed frame differences via a morphing-based technology and fuses the merged frame difference with the at least a candidate region, thereby obtaining the location and a complete outline of the moving object.
Abstract:
A method for tracking a moving object is provided. The method detects the moving object in a plurality of continuous images so as to obtain space information of the moving object in each of the images. In addition, appearance features of the moving object in each of the images are captured to build an appearance model. Finally, the space information and the appearance model are combined to track a moving path of the moving object in the images. Accordingly, the present invention is able to keep tracking the moving object even if the moving object leaves the monitoring frame and returns again, so as to assist the supervisor in finding abnormal acts and making following reactions.
Abstract:
A method of making a semiconductor chip assembly includes providing a post, a base, a support layer and an underlayer, wherein the post extends above the base and the support layer is sandwiched between the base and the underlayer, mounting an adhesive on the base including inserting the post into an opening in the adhesive, mounting a conductive layer on the adhesive including aligning the post with an aperture in the conductive layer, then flowing the adhesive upward between the post and the conductive layer, solidifying the adhesive, then providing a conductive trace that includes a pad, a terminal and a selected portion of the conductive layer, providing a heat spreader that includes the post, the base, the underlayer and a thermal via that extends from the base through the support layer to the underlayer, then mounting a semiconductor device on the post, electrically connecting the semiconductor device to the conductive trace and thermally connecting the semiconductor device to the heat spreader.