Abstract:
A fixing member is spaced from a head actuator by a predetermined distance. A flexible printed circuit board extends at least from the head actuator to the fixing member. The flexible printed circuit board is superposed on the surface of the fixing member. A viscoelastic layer and a protecting layer are overlaid on the surface of the flexible printed circuit board. A clip clips all the fixing member, the flexible printed circuit board, the viscoelastic layer and the protecting layer together. When a head slider is positioned, the head actuator changes its attitude relative to a recording disk. The inertial force based on the rotation causes the first flexible printed circuit board to vibrate when the actuator block stops rotating. The viscoelastic layer serves to absorb this residual vibration of the first flexible printed circuit board. Vibration of the flexible printed circuit board can be suppressed.
Abstract:
The magnetic disk device includes magnetic disks, magnetic head arms and wind shield members arranged above and below the magnetic disks, respectively, in a region adjacent to the magnetic head arms. The wind shield members are arranged on the rotationally upstream side of the magnetic head arms, and the air flow generated by the rotation of the magnetic disks and impinging against the magnetic head arms is guided to the outside of the magnetic disks.
Abstract:
Disclosed herein is a magnetic disk drive including a spindle shaft fixed to a base, a coil mounted on the spindle shaft, a spindle hub rotatably mounted on the spindle shaft, a magnetic disk fixed to the spindle hub and having a plurality of tracks, a permanent magnet fixed to the spindle hub, a magnetic head for reading/writing information from/to the magnetic disk, and an actuator for moving the magnetic head across the tracks of the magnetic disk. The magnetic disk drive further includes a cover fixed to the base and having a hole at a position corresponding to the spindle shaft, a first metal washer placed on the cover at a portion around the hole, a second metal washer for sandwiching the cover at the portion around the hole in cooperation with the first metal washer, and a screw for securing the first and second metal washers to the spindle shaft.
Abstract:
Disclosed is a magnetic disk apparatus constructed to reduce a track positional deviation of a magnetic head. This magnetic disk apparatus includes a rotary mechanism for rotating the magnetic disk and a rotary type actuator, provided with the magnetic head at its front end, which magnetic head has a write head and a read head, for moving the magnetic head in such a direction as to traverse tracks of the magnetic disk by making rotations about a rotary shaft. A distance A from the center of rotation of the rotary type actuator to the magnetic head is set equal to or larger than a distance B from the center of rotation of the rotary type actuator to the center of rotation of the magnetic disk. Even when separating a write element and a read element, the track positional deviation of the magnetic head can be reduced. This magnetic disk apparatus includes an enclosure accommodating both of a rotary mechanism and the rotary type actuator and having a base taking such a configuration that one side surface thereof is opened and a cover fitted in the base, wherein a side for separating the base and the cover is formed at a slant to a long side of the apparatus. This construction makes it possible to enhance a rigidity of the enclosure and reduce the track positional deviation of the magnetic head.
Abstract:
A rotary driving apparatus controls the generation of vibration and noise due to high speed rotation, to realize high accuracy rotation, so that a storage apparatus such as a disk drive can have high speed rotation and improved storing density on its recording medium. The apparatus includes a fixed shaft for rotatably supporting a rotor, a bearing fitted between the shaft and the rotor, at least two projections projecting from the surface of the shaft, and a stator coil mounted on the projections. The projections absorb stator vibration, and isolate the head, the storage disk and other parts from the stator vibrations. A gap area is formed between the stator coil and the shaft to dampen vibrations created by the stator. The gap may be filled with vibration-absorbing material.
Abstract:
An antibody of a human leukemia virus-related peptide obtained by collecting an antibody produced in a mammal body by administering to the mammal an antigen prepared by reacting a human leukemia virus-related peptide selected from the group consisting of:(a) a peptide represented by formula (1):H-Tyr-Val-Glu-Pro-Thr-Ala-Pro-Gln-Val-Leu-H (1)(b) a peptide represented by formula (2):R-Ile-Pro-His-Pro-Lys-Asn-Ser-Ile-Gly-Gly-Glu-Val-OH (2)wherein R is the same as drefined above;(c) a peptide represented by formula (3):R-Thr-Trp-Thr-Pro-Lys-Asp-Lys-Thr-Lys-Val-Leu-OH (3)wherein R is the same as defined above;(d) a peptide represented by formula (4):H-Val-Val-Gln-Pro-Lys-Lys-Pro-Pro-Pro-Tyr-OH (4)(e) a peptide represented by formula (5):R-Met-Gly-Gln-Ile-Phe-Ser-Arg-Ser-Ala-Ser-Pro-OH (5)wherein R is the same as defined above; and(f) a peptide represented by formula (6):H-Tyr-Pro-Glu-Gly-Thr-Pro-Lys-Asp-Pro-Ile-Leu-Arg-Ser-Leu-OH (6)as a hapten, with a carrier in the presence of a hapten-carrier binding agent.
Abstract:
A fixing member is spaced from a head actuator by a predetermined distance. A flexible printed circuit board extends at least from the head actuator to the fixing member. The flexible printed circuit board is superposed on the surface of the fixing member. A viscoelastic layer and a protecting layer are overlaid on the surface of the flexible printed circuit board. A clip clips all the fixing member, the flexible printed circuit board, the viscoelastic layer and the protecting layer together. When a head slider is positioned, the head actuator changes its attitude relative to a recording disk. The inertial force based on the rotation causes the first flexible printed circuit board to vibrate when the actuator block stops rotating. The viscoelastic layer serves to absorb this residual vibration of the first flexible printed circuit board. Vibration of the flexible printed circuit board can be suppressed.
Abstract:
A fixing member is spaced from a head actuator by a predetermined distance. A flexible printed circuit board extends at least from the head actuator to the fixing member. The flexible printed circuit board is superposed on the surface of the fixing member. A viscoelastic layer and a protecting layer are overlaid on the surface of the flexible printed circuit board. A clip clips all the fixing member, the flexible printed circuit board, the viscoelastic layer and the protecting layer together. When a head slider is positioned, the head actuator changes its attitude relative to a recording disk. The inertial force based on the rotation causes the first flexible printed circuit board to vibrate when the actuator block stops rotating. The viscoelastic layer serves to absorb this residual vibration of the first flexible printed circuit board. Vibration of the flexible printed circuit board can be suppressed.
Abstract:
A fixing member is spaced from a head actuator by a predetermined distance. A flexible printed circuit board extends at least from the head actuator to the fixing member. The flexible printed circuit board is superposed on the surface of the fixing member. A viscoelastic layer and a protecting layer are overlaid on the surface of the flexible printed circuit board. A clip clips all the fixing member, the flexible printed circuit board, the viscoelastic layer and the protecting layer together. When a head slider is positioned, the head actuator changes its attitude relative to a recording disk. The inertial force based on the rotation causes the first flexible printed circuit board to vibrate when the actuator block stops rotating. The viscoelastic layer serves to absorb this residual vibration of the first flexible printed circuit board. Vibration of the flexible printed circuit board can be suppressed.
Abstract:
A fixing member is spaced from a head actuator by a predetermined distance. A flexible printed circuit board extends at least from the head actuator to the fixing member. The flexible printed circuit board is superposed on the surface of the fixing member. A viscoelastic layer and a protecting layer are over laid on the surface of the flexible printed circuit board. A clip clips all the fixing member, the flexible printed circuit board, the viscoelastic layer and the protecting layer together. When a head slider is positioned, the head actuator changes its attitude relative to a recording disk. The inertial force based on the rotation causes the first flexible printed circuit board to vibrate when the actuator block stops rotating. The viscoelastic layer serves to absorb this residual vibration of the first flexible printed circuit board. Vibration of the flexible printed circuit board can be suppressed.