Abstract:
A photovoltaic module comprises a first group of solar cells; a second group of solar cells; a first interconnection member extending across a first surface of the first group of solar cells and across a first surface of the second group of solar cells to connect the first and second groups of solar cells in parallel; and a second interconnection member extending across a second surface of the first group of solar cells and across a second surface of the second group of solar cells.
Abstract:
Described is a continuous electroless deposition method and a system to form a solar cell buffer layer with a varying composition through its thickness are provided. The composition of the buffer layer is varied by varying the composition of a chemical bath deposition solution applied onto an absorber surface on which the buffer layer with varying composition is formed. In one example, the buffer layer with varying composition includes a first section containing CdS, a second section containing CdZnS formed on top of the already deposited CdS, and a third section containing ZnS is formed on the second section All the process steps are applied in a roll-to-roll fashion. In another example, a transparent conductive layer including a first transparent conductive film such as aluminum doped zinc oxide and a second transparent conductive film such as indium tin oxide is deposited over the buffer layer with the varying composition.
Abstract:
Described are embodiments including an apparatus that provides a thin film solar cell base structure for a photovoltaic device, a method of manufacturing a photovoltaic device, a roll to roll method of manufacturing a thin film solar cell base structure, and a ruthenium alloy sheet material.
Abstract:
A solar cell including a high electrical resistivity transparent layer formed on a CdS buffer layer is provided. The high electrical resistivity transparent layer includes an intrinsic oxide film formed on the buffer layer and an intermediate oxide film formed on the intrinsic oxide film. The intrinsic oxide film includes undoped zinc oxide and has a thickness range of 10 to 40 nm. The intermediate oxide film includes semi-intrinsic zinc oxide doped with aluminum and has a thickness range of 50-150 nm. The intermediate oxide film has an aluminum concentration of less than 1000 ppm.
Abstract:
In one embodiment, a continuous electroless deposition method and a system to form a solar cell buffer layer with a varying composition through its thickness are provided. The composition of the buffer layer is varied by varying the composition of a chemical bath deposition solution applied onto an absorber surface on which the buffer layer with varying composition is formed. In one example, the buffer layer with varying composition includes a first section containing CdS, a second section containing CdZnS formed on top of the already deposited CdS, and a third section containing ZnS is formed on the second section All the process steps are applied in a roll-to-roll fashion. In another embodiment, a transparent conductive layer including a first transparent conductive film such as aluminum doped zinc oxide and a second transparent conductive film such as indium tin oxide is deposited over the buffer layer with the varying composition.
Abstract:
The present invention is directed towards increasing the conductivity of the electrical lead material in the read head portion of a magnetic head, such that thinner electrical leads can be fabricated while the current carrying capacity of the leads is maintained. This increase in electrical lead conductivity is accomplished by fabricating the electrical lead upon an epitaxially matched seed layer, such that the crystalline microstructure of the electrical lead material has fewer grain boundaries, whereby the electrical conductivity of the lead material is increased. In a preferred embodiment, the electrical lead material is comprised of Rh, which has an FCC crystal structure, and the seed layer is comprised of a metal, or metal alloy having a BCC crystal structure with unit cell lattice constant dimensions that satisfy the relationship that abcc is approximately equal to 0.816afcc. In various embodiments, the seed layer is comprised of VMo or VW.
Abstract:
A roll to roll system for depositing a material on a workpiece is provided. In one embodiment, the system includes a drum, which rotates about an axis that is transverse to a process direction, and a number of PVD deposition units. The drum further includes a peripheral surface that includes a groove having a recessed workpiece contact surface that is parallel to the axis and disposed between a first side wall and a second side wall. A portion of the recessed workpiece contact surface supports a section of the workpiece and the first and second side walls maintain the section of the workpiece on the portion of the recessed workpiece contact surface as the workpiece is moved along the process direction. The PVD deposition units are disposed across from some of the portion of the peripheral surface and continuously deposit the material across a width of some of the section of the workpiece.
Abstract:
The present invention provides a method and precursor structure to form a solar cell absorber layer. The method includes electrodepositing a first layer including a film stack including at least a first film comprising copper, a second film comprising indium and a third film comprising gallium, wherein the first layer includes a first amount of copper, electrodepositing a second layer onto the first layer, the second layer including at least one of a second copper-indium-gallium-ternary alloy film, a copper-indium binary alloy film, a copper-gallium binary alloy film and a copper-selenium binary alloy film, wherein the second layer includes a second amount of copper, which is higher than the first amount of copper, and electrodepositing a third layer onto the second layer, the third layer including selenium; and reacting the precursor stack to form an absorber layer on the base.
Abstract:
A thin film solar cell including a Group IBIIIAVIA absorber layer on a defect free base including a stainless steel substrate is provided. The stainless steel substrate of the base is surface treated to remove the surface roughness such as protrusions that cause shunts. Before removing the protrusions, a thin protective ruthenium film is first deposited on the recessed surface portions of the substrate to protect these portions during the following protrusion removal. The protrusions on the surface receives very little or no ruthenium during the deposition. After the ruthenium film is formed, the protrusions are etched and removed by an etchant which only attacks the stainless steel but neutral to the ruthenium film. A contact layer is formed over the ruthenium layer and the exposed portions of the substrate to complete the base.
Abstract:
A magnetoresistive sensor having a lead overlay defined trackwidth and a pinned layer that extends beyond the stripe height defined by the free layer of the sensor. The extended pinned layer has a strong shape induced anisotropy that maintains pinning of the pinned layer moment. The extended portion of the pinned layer has sides beyond the stripe height that are perfectly aligned with the sides of the sensor within the stripe height. This perfect alignment is made possible by a manufacturing method that uses a mask structure for more than one manufacturing phase, eliminating the need for multiple mask alignments. The lead overlay design allows narrow, accurate trackwidth definition.