Abstract:
A method of using and a steel reinforced concrete protector in an anode cavity which comprises a cored hole, a drilled hole or a cut chase formed in concrete. The protector comprises a sacrificial anode assembly and a separate backfill. The sacrificial anode assembly comprises a sacrificial metal element that is a metal less noble than steel and an activator to maintain an activity of the sacrificial metal element. The at least one spacer prevents the sacrificial metal element and the activator from contacting the surface of the anode cavity. The spacer and the sacrificial metal element have a coupling mechanism which facilitates connection of the sacrificial metal element to the spacer. The backfill is a pliable and viscous material which contains an electrolyte, and the backfill facilitates embedding the anode assembly in the anode cavity. The invention also relates to a prepackaged sacrificial anode assembly and a method of increasing a shelf life of the sacrificial anode.
Abstract:
An anode and backfill steel protector combination for inserting into at least one cavity which is mechanically formed in steel reinforced concrete. The anode and the backfill steel protector combination comprises an anode for insertion into the at least one cavity with the anode comprising a sacrificial metal element less noble than steel and a backfill which comprises a viscous and pliable ionically conductive material for insertion into the at least one cavity. The backfill is packaged within a cartridge and the cartridge is a cartridge for use with a cartridge which facilitates injecting the backfill from the cartridge into the at least cavity formed in the concrete. The backfill in a cartridge has a shelf life of at least 2 days.
Abstract:
An electric field modifier for boosting current output of a sacrificial anode for reinforced concrete to enhance its protective effect and direct the current output in a preferred direction to improve current distribution in galvanic protection of steel exposed to air. The combination comprises a sacrificial anode and an electric field modifier and an ionically conductive filler embedded in a cavity and the sacrificial anode is directly connected to the steel. The modifier comprises an element with an anode side supporting an oxidation reaction in electronic contact with a cathode side supporting a reduction reaction. The cathode of the modifier may form a cell with the sacrificial anode and is separated therefrom by the filler. The filler contains an electrolyte that connects the sacrificial anode to the cathode of the modifier. The reduction reaction on the cathode of the modifier may substantially comprise the reduction of oxygen from the air.
Abstract:
The installation and use of embedded sacrificial anodes to protect reinforced concrete may be improved. In one example a cavity [2] is formed in the concrete [3] and a puttylike backfill [4] is placed in the cavity and a compact discrete anode comprising a sacrificial metal element [1] is inserted into the backfill and a space is provided into which the backfill may move when subjected to a pressure arising from the formation of voluminous sacrificial meal corrosion products and a high current is passed from the anode to the steel in the concrete to arrest steel corrosion and activate the anode in the backfill. The space may be provided by venting the backfill to space outside the cavity through an opening [5] or by including a void space within the backfill [6] or a void space within the cavity [7].
Abstract:
A single anode system used in multiple electrochemical treatments to control steel corrosion in concrete comprises a sacrificial metal that is capable of supporting high impressed anode current densities with an impressed current anode connection detail and a porous embedding material containing an electrolyte. Initially current is driven from the sacrificial metal [1] to the steel [10] using a power source [5] converting oxygen and water [14] into hydroxyl ions [15] on the steel and drawing chloride ions [16] into the porous material [2] around the anode such that corroding sites are moved from the steel to the anode restoring steel passivity and activating the anode. Cathodic prevention is then applied. This is preferably sacrificial cathodic prevention that is applied by disconnecting the power source and connecting the activated sacrificial anode directly to the steel.
Abstract:
The installation and use of embedded sacrificial anodes to protect reinforced concrete may be improved. In one example a cavity [2] is formed in the concrete [3] and a puttylike backfill [4] is placed in the cavity and a compact discrete anode comprising a sacrificial metal element [1] is inserted into the backfill and a space is provided into which the backfill may move when subjected to a pressure arising from the formation of voluminous sacrificial metal corrosion products and a high current is passed from the anode to the steel in the concrete to arrest steel corrosion and activate the anode in the backfill. The space may be provided by venting the backfill to space outside the cavity through an opening [5] or by including a void space within the backfill [6] or a void space within the cavity [7].
Abstract:
A method of protecting a metal section in concrete. The method comprises the steps of providing a sacrificial anode and embedding the sacrificial anode in a porous matrix in the cavity; providing a source of DC power with positive and negative connections and electrically connecting one of the connections of the source of DC power to the metal section to be protected; electrically connecting the a sacrificial anode in series with the other connection of the source of DC power and spacing the source of DC power from the cavity and the connections to the source of DC power which comprise at least one of wires and cables; and driving an anode current density from the sacrificial anode in excess of 500 mA/m2. An apparatus of protecting a metal section in concrete is also disclosed.
Abstract translation:保护混凝土中金属部分的方法。 该方法包括以下步骤:提供牺牲阳极并将牺牲阳极嵌入在空腔中的多孔基质中; 提供具有正和负连接的直流电源,并将DC电源的连接中的一个电连接到待保护的金属部分; 将牺牲阳极与直流电源的另一连接串联连接,并将来自腔的直流电力源和与包括电线和电缆中的至少一个的直流电力源的连接间隔开; 并且从牺牲阳极驱动超过500mA / m 2的阳极电流密度。 还公开了一种保护混凝土中的金属部分的装置。
Abstract:
A method of protecting a metal section in concrete. The method comprises the steps of providing a sacrificial anode and embedding the sacrificial anode in a porous matrix in the cavity; providing a source of DC power with positive and negative connections and electrically connecting one of the connections of the source of DC power to the metal section to be protected; electrically connecting the a sacrificial anode in series with the other connection of the source of DC power and spacing the source of DC power from the cavity and the connections to the source of DC power which comprise at least one of wires and cables; and driving an anode current density from the sacrificial anode in excess of 500 mA/m2. An apparatus of protecting a metal section in concrete is also disclosed.
Abstract translation:保护混凝土中金属部分的方法。 该方法包括以下步骤:提供牺牲阳极并将牺牲阳极嵌入在空腔中的多孔基质中; 提供具有正和负连接的直流电源,并将DC电源的连接中的一个电连接到待保护的金属部分; 将牺牲阳极与直流电源的另一连接串联连接,并将来自腔的直流电力源和与包括电线和电缆中的至少一个的直流电力源的连接间隔开; 并且从牺牲阳极驱动超过500mA / m 2的阳极电流密度。 还公开了一种保护混凝土中的金属部分的装置。
Abstract:
An electric field modifier for boosting a current output of a sacrificial anode to enhance its protective effect and direct the current output to improve current distribution in galvanic protection of steel in a concrete element exposed to air is disclosed. A cavity is formed in a concrete element and a combination comprising a sacrificial anode, an electric field modifier and an ionically conductive filler are embedded therein. The sacrificial anode is connected to the steel. The modifier comprises an element with an anode side, supporting an oxidation reaction, in electrical contact with a cathode side, supporting a reduction reaction. The cathode of the modifier faces the sacrificial anode and is separated therefrom by a filler which contains an electrolyte that connects the sacrificial anode to the cathode of the modifier. The anode of the modifier faces away from the sacrificial anode. Preferably, the reduction reaction, on the cathode of the modifier, comprises reduction of oxygen from the air.
Abstract:
The connections to anodes used in impressed current electrochemical treatments of steel in concrete construction are at risk from rapid corrosion arising from induced anodic dissolution when these connections are embedded in reinforced concrete. A corrosion resistant connection that does not require any further protective insulation can be formed using titanium conductors [2,6] and connecting the conductors together at a conductor-conductor connection [5] using a clamping device comprising a non-metallic material wherein the clamping device only brings corrosion resistant material into contact with the conductors.