Abstract:
A method of, and system for, selective video frame compression and decompression is presented. The disclosed technique is particularly suited for efficient event-driven searching in large databases. The technique involves designating certain frames in a video sequence as reference frames, to be compressed using a first compression technique, where the remaining frames are compressed using a second compression technique. The first compression technique may be implemented without requiring data from any neighboring frames.
Abstract:
A method and a system for determining a parking boundary violation includes receiving video data from a sequence of frames taken from an image capture device monitoring a parking area including at least a single parking space. A boundary is determined for defining at least one parking space in the parking area. A vehicle is detected in the parking area. A determination is made whether the detected vehicle is violating a parking regulation based on a position and size of the vehicle within the boundary.
Abstract:
What is disclosed is a system and method for encoding and decoding data in a color barcode pattern using dot orientation and color separability. The spectral (wavelength) characteristics of the CMY colorants, commonly used in digital printing, and those of RGB sensors are exploited to achieve high capacity data embedding rates in color barcodes. The present method embeds independent data in two different printer colorant channels using dot orientation modulation. In the print end, dots of two colorants occupy the same spatial region. At the detector end, by using the complementary sensor channels to estimate the colorant channels, data is recovered in each colorant channel. The method approximately doubles the capacity of encoding methods based upon a single colorant channel and enables embedding rates which match or exceed that of other hardcopy barcodes known in the arts. The method is robust against inter-separation misregistration with a small symbol error rate.
Abstract:
What is disclosed is a system and method for encoding and decoding data in a color barcode pattern using dot orientation and color separability. The spectral (wavelength) characteristics of the CMY colorants, commonly used in digital printing, and those of RGB sensors are exploited to achieve high capacity data embedding rates in color barcodes. The present method embeds independent data in two different printer colorant channels using dot orientation modulation. In the print end, dots of two colorants occupy the same spatial region. At the detector end, by using the complementary sensor channels to estimate the colorant channels, data is recovered in each colorant channel. The method approximately doubles the capacity of encoding methods based upon a single colorant channel and enables embedding rates which match or exceed that of other hardcopy barcodes known in the arts. The method is robust against inter-separation misregistration with a small symbol error rate.
Abstract:
A method of, and system for, selective video frame compression and decompression is presented. The disclosed technique is particularly suited for efficient event-driven searching in large databases. The technique involves designating certain frames in a video sequence as reference frames, to be compressed using a first compression technique, where the remaining frames are compressed using a second compression technique. The first compression technique may be implemented without requiring data from any neighboring frames.
Abstract:
Methods and systems for discriminating between tires. One or more images of an unknown tire are received. One or more tread features are extracted from the images. The class of the unknown tire is determined using a classifier that matches the tread features to known tread features.
Abstract:
What is disclosed is a system and method for encoding and decoding data in a color barcode pattern using dot orientation and color separability. The spectral (wavelength) characteristics of the CMY colorants, commonly used in digital printing, and those of RGB sensors are exploited to achieve high capacity data embedding rates in color barcodes. The present method embeds independent data in two different printer colorant channels using dot orientation modulation. In the print end, dots of two colorants occupy the same spatial region. At the detector end, by using the complementary sensor channels to estimate the colorant channels, data is recovered in each colorant channel. The method approximately doubles the capacity of encoding methods based upon a single colorant channel and enables embedding rates which match or exceed that of other hardcopy barcodes known in the arts. The method is robust against inter-separation misregistration with a small symbol error rate.
Abstract:
A method for enforcing traffic signal compliance includes acquiring a series of temporal related image frames including a target area. Each image frame includes pixel data representative of the target area. The method includes generating one or more motion vectors between two or more of the image frames. The motion vectors are the type produced by compressing the pixel data associated with the two or more image frames. The method includes associating a cluster of motion vectors with a vehicle. The method further includes tracking a position of the vehicle across the two or more image frames. Using the tracking results, the method includes determining whether the vehicle stops in the target area. For the vehicle being determined as not stopping, the method includes signaling an occurrence of noncompliance.
Abstract:
Automated low-complexity video-based vehicle speed estimation is described, that operates within the video stream to screen video sequences to identify and eliminate clear non-violators and/or identify and select potential violators within a multi-layer speed enforcement system, in which deeper layers provide enhanced accuracy on selected candidate (speeding) vehicles. Video motion vector clusters corresponding to a vehicle are identified and tracked across multiple frames of captured video. Movement of the motion vector clusters translated from pixels per second to real speed (e.g. miles per hour) to determine whether the vehicle was speeding. Estimated speed data is added to the video stream data is metadata, and video segments of candidate speeding vehicles are stored and/or transmitted for subsequent review (e.g. automated or manual).
Abstract:
Methods and systems for discriminating between tires. One or more images of an unknown tire are received. One or more tread features are extracted from the images. The class of the unknown tire is determined using a classifier that matches the tread features to known tread features.