Abstract:
A guardrail assembly includes first and second rail sections, with a deforming member deforming the first rail section as it moves relative to the second rail section. Methods of using and assembling a guardrail assembly are also provided.
Abstract:
A barrier transfer device includes a cantilevered support arm and a carriage coupled to the support arm. The carriage includes at least a pair of barrier interface members extending downwardly from the support arm. The barrier interface members are configured to engage a barrier on opposite sides thereof when the barrier. A system for transferring a barrier includes a transfer vehicle having an outermost portion on each of first and second opposite sides of the transfer vehicle. The cantilevered support arm is coupled to the transfer vehicle and extends laterally outwardly past the outermost portion of the transfer vehicle on the first side of the transfer vehicle. A moveable barrier system includes at least one barrier having first and second sides and a bottom adapted to be supported by a ground surface and a transfer vehicle having a barrier interface element engaging only a first side of said barrier. Methods for transferring a barrier are also provided.
Abstract:
A non-lethal energy absorbing vehicle barrier for decelerating an impacting vehicle a gate member disposed between first and second gate receivers that is deformable from a pre-impact configuration to an impact configuration. The gate member may include a first deformable energy absorption member having a first end coupled to the first gate receiver and a second end extending inward toward a center of the gate member; a second deformable energy absorption member having a first end coupled to the second gate receiver and a second end extending inward toward the center of the gate member; and a deforming member connecting the first and second deformable energy absorption members in an overlapping configuration. The deforming member is configured to engage and deform the first and second deformable energy absorption members as the gate member is deformed from the pre-impact configuration to the impact configuration.
Abstract:
A vehicle mounted crash attenuator includes first and second bays mounted together at a rotational joint. One or more hydraulic cylinders are mounted between the bays to move the second bay between a deployed position, in which the first and second bays are aligned horizontally, and a retracted position, in which the second bay is rotated about the rotational joint by a rotation angle greater than 90° from the deployed position. In this way, the second bay is raised above the first bay, and the overall length of the crash attenuator is shortened, all without excessively increasing the overall height of the crash attenuator.
Abstract:
A highway crash cushion provides a system response profile that reduces the stopping distance of an impact event. This crash cushion includes a frame that forms at least two bays arranged one behind another in an anticipated impact direction. The frame includes at least three transverse frames and side frames extending between adjacent transverse frames. Each of the side frames is outwardly bowed and includes first and second side frame elements coupled to the respective transverse frames, and a hinge coupled between the first and second side frame elements. At least one energy absorbing element is disposed in one of the bays, and at least first and second restraints are coupled to the side frames to resist movement of the hinges at an early stage in an impact event. The crash cushion is partially collapsed automatically as the crash cushion is raised from a horizontal to a vertical position, and then extended automatically to its operational position as the crash cushion is lowered from the vertical to the horizontal position. The energy absorbing elements can include tapered frusto-conical sheet metal elements that are stacked with the smaller ends facing first and second opposed sides of the energy absorbing element.
Abstract:
A highway guardrail includes an elongated metal plate that forms at least one ridge. The plate includes weakened regions extending at least partially across the plate, and these weakened regions are oriented obliquely to the longitudinal direction to form at least one elongated fold region at which the plate tends to buckle when subjected to a sufficiently large column load. This fold region is oriented obliquely to the longitudinal direction to push the forward end of the guardrail downwardly in an axial collapse. The forward end of the guardrail includes a cable that passes through an opening in the forward support post. A split washer is positioned around this cable adjacent to the forward support post. The split washer includes first and second load transferring members that readily separate from one another after the first support post breaks at the opening in an axial impact.
Abstract:
A highway guardrail includes an elongated metal plate that forms at least one ridge. The plate includes weakened regions extending at least partially across the plate, and these weakened regions are oriented obliquely to the longitudinal direction to form at least one elongated fold region at which the plate tends to buckle when subjected to a sufficiently large column load. This fold region is oriented obliquely to the longitudinal direction to push the forward end of the guardrail downwardly in an axial collapse. The forward end of the guardrail includes a cable that passes through an opening in the forward support post. A split washer is positioned around this cable adjacent to the forward support post. The split washer includes first and second load transferring members that readily separate from one another after the first support post breaks at the opening in an axial impact.
Abstract:
An end terminal for a guardrail system includes an elongated guardrail beam and a flattening or reshaping device defining a channel having an inlet and an outlet vertically aligned along a longitudinal axis. The guardrail beam is moveable along the longitudinal axis through the channel from the inlet to the outlet. An anchor is vertically spaced below the outlet, with a tether coupled between the anchor and an end portion of the guardrail beam. The tether is adapted to pull the guardrail beam downwardly from a first height at the outlet to a second height vertically spaced from the first height free of any engagement with any other structure once the guardrail beam exits the outlet, and with a bending of the deformed guardrail beam in only one direction after the deformed guardrail beam leaves the outlet. Methods of assembly and operation are also provided.
Abstract:
A frangible post captures and holds a cable anchor to a guardrail. The post breaks when struck by a vehicle, releasing the cable. The frangible post may include hinge members, which bias the post so that weakened sections are put in tension when the post is struck, thereby ensuring that the post breaks cleanly and the cable is released when the post is struck. A method of releasing a cable anchor includes impacting the post, biasing the weakened sections so that they are in tension, breaking the post, and releasing the cable anchor. The post may be configured with a notch to engage the cable anchor, which is then released from the notch as the post is broken.
Abstract:
An energy absorbing vehicle barrier includes a frame defining a compartment. In one embodiment, the frame includes a nose. An energy absorbing cartridge is disposed within the compartment. A retaining device is coupled to the frame, with the retaining device disposed above and extending over at least a portion of an upper surface of the cartridge. The retaining device may contact and engage the upper surface of the cartridge when the barrier is impacted by a vehicle. In this way, the retaining device substantially prevents movement of the cartridge in at least a vertical direction during the impact. Methods of using and assembling the barrier are also provided.