Abstract:
A system and method are described herein for self-referencing a sensor that is used to detect a biomolecular binding event and/or kinetics which occur in a sample solution flowing along side a reference solution in a micron-sized deep flow channel.
Abstract:
A fluid handling system for transferring fluids is disclosed. The fluid handling system incorporates a plurality of transfer units for dispensing and/or collecting fluids as part of a closed analytical system. The plurality of transfer units are capable of functioning independently and/or collectively when assembled in a unitary array format. Methods of making and using the fluid handling system are also disclosed. The fluid handling system allows a sub-array of transfer units to shift in a vertical direction independent from a position of another sub-array of transfer units that are assembled within the same fluid head. Therefore, the fluid handling system facilitates multi-port fluid delivery and collection in an array format. Further, the fluid handling system aligned with a sensing surface enables label-free detection assays to be performed in an analytical system.
Abstract:
Disclosed are compositions and methods for using label free optical biosensors for performing cell assays. In certain embodiments the assays can be performed in high throughput methods and can be multiplexed.
Abstract:
Disclosed are compositions and methods for using label free optical biosensors for performing cell assays. In certain embodiments the assays can be performed in highthough put methods and can be multiplexed.
Abstract:
A micro fluidic apparatus includes (i) a first conduit; (ii) a second conduit; and (iii) a first interconnected microporous network in communication with the first and second conduits and configured to allow diffusion of gas between the first and second conduits. The microporous network comprises poly(dimethylsiloxane) (PDMS) and prevents flow of aqueous fluid between the first and second conduits through the microporous network.
Abstract:
A cell culture article has substrate that is predominantly opaque and that provides a three-dimensional (e.g., irregular) surface, but incorporates an optically transparent, substantially regular (e.g., two-dimensional) surface to serve as a microscopic observation and imaging window for the 3D cell culture. In many embodiments, the 3D portion of the substrate occupies greater than 99% of the surface while the 2D portion occupies less than 1% of the surface so as not to substantially disrupt the general 3D culture environment.
Abstract:
Polymeric sheets having interconnected microporous networks are generated by contacting the sheets with a composition including solvent and non-solvent in an appropriate ratio and removing the composition from the sheet. Such sheets may be advantageously used in micro fluidic devices for a variety of purposes.
Abstract:
A microfluidic device is described herein which comprises a micron-sized deep flow channel and a sensor. The micron-sized deep flow channel is configured such that a sample solution and a reference solution flow side-by-side to one another in a single sensing region of the sensor. The single sensing region is divided into a detection region and a reference region which are contiguous to one another and which are respectively interfaced with the sample solution and the reference solution that flow side-by-side to one another in a longitudinal direction within the micron-sized deep flow channel.
Abstract:
A device and methods for performing biological or chemical analysis is provided. The device includes an array of three-dimensional microcolumns projecting away from a support plate. Each microcolumn has a relatively planar, first surface remote from the support plate. An array of multiple, different biological materials may be attached to the first surface. The device, when used in combination with existent micro-titer well plates, can improve efficiency of binding assays using microarrays for high-throughput capacity.
Abstract:
A biological assay device for use in molecular biology, pharmaceutical research, genomic analysis, combinatorial chemistry, and in the general field of the analysis of molecules that may be deposited on supports of various kinds is provided. Specifically, the present invention includes a fluidic or microfluidic device, which integrates fluidic capability into existing multi-well plates of standard configuration, for performing either single or continuous fluidic manipulations in a high-throughout format. Methods for the use and manufacture of these devices are also provided.