Abstract:
A web-enabled resin panel customization website, hosted through a web portal, provides, through a client computer system, one or more user interfaces configured to receive a plurality of user selections, and provide a realistic display of the resulting output. In one implementation, a processing module overlays transparent portions of images representing a translucent resin substrate with one or more images representing decorative objects, films, or the like. The processing module can also combine pixel information from each of the added/overlain layers. In either case, the processing module sends a combined pixel data stream that can be rendered by a client system, and thus provide a user with a realistic depiction of the user's resin panel selections. The customization website further includes one or more user interfaces that enable a user to store specific resin panel design profiles, and order resin panels corresponding to those specific design profiles.
Abstract:
Implementations of the present invention relate aesthetically pleasing decorative architectural resin panels having a thin or brittle veneer layer, such as thinly sliced natural wood or stone. In particular, at least one implementation includes a flat or curved decorative resin panel made with a natural wood veneer layer whose structural integrity has been maintained despite being subject to various heats and pressures. The resulting resin panel is at least partially translucent, and allows for a unique display both of the resin sheets used to form the panel and of the thin wood materials encapsulated therein. Additional implementations relate to the use of other brittle veneer layers, such as translucent stone, translucent metals, or the like, which also provide unique, decorative architectural, aesthetic features.
Abstract:
A web-enabled resin panel customization website, hosted through a web portal, provides, through a client computer system, one or more user interfaces configured to receive a plurality of user selections, and provide a realistic display of the resulting output. In one implementation, a processing module overlays transparent portions of images representing a translucent resin substrate with one or more images representing decorative objects, films, or the like. The processing module can also combine pixel information from each of the added/overlain layers. In either case, the processing module sends a combined pixel data stream that can be rendered by a client system, and thus provide a user with a realistic depiction of the user's resin panel selections. The customization website further includes one or more user interfaces that enable a user to store specific resin panel design profiles, and order resin panels corresponding to those specific design profiles.
Abstract:
A decorative laminate panel comprises compressible objects embedded inside, wherein the compressible objects would be flattened in unnatural shapes under conventional processes. For example, an exemplary decorative laminate product comprises thatch reed, willow reed, bamboo, weeds, grasses, twigs and branches of a tree or bush, beans, and so forth. In at least one exemplary implementation of the present invention, an extruded sheet, such as PETG or polycarbonate, is softened and melted around the compressible materials such that the compressible materials do not deform. Imperfections in the decorative laminate panel can be easily removed, thereby allowing for producing a high quality decorative laminate panel with high efficiency and relatively low cost compared with conventional methods and materials.
Abstract:
A roller door system includes a roller assembly configured to mount directly to a panel and move along a complementary upper guide. In particular, the roller assembly can be coupled to a coupling member embedded in the panel. The roller assembly, when coupled with the panel, can provide a smooth gliding motion for the panel.
Abstract:
A roller door system includes one or more sets of rollers configured to mount to a panel frame member on an upper end of a panel, and move through a complementary upper guide. A lower side of the panel frame can also be guided through one or more bottom tracks. These components, when coupled with the resin panel, can provide the ability to provide a smooth gliding motion for the resin panel door. In addition, the frame in which the panel is mounted can be configured with one or more components to accommodate the unique expansion and contraction properties of resin materials, and thus allow a stable, long term mounting solution. The upper guide and the lower track can also be configured with one or more components or mechanisms for pitch adjustment, as well as to adjust for uneven or irregular mounting surfaces.
Abstract:
A translucent wall in accordance with the present invention is configured to provide aesthetic qualities to existing walls using resin-based panels. In one implementation, one or more resin-based panels are mounted to an existing wall using one or more easily assembled frames and one or more standoffs. The panels, frames, and standoffs are configured to mount the resin-based panels away from the wall by a specific distance, thereby allowing light to be transmitted through the resin-based panels. This light transmittance in turn provides a number of decorative advantages in terms of coloring, texturing, and in terms of exhibiting decorative objects embedded in the resin-based panels. The one or more frames used in accordance with the present invention can be easily adapted to any interior or exterior space or finish, such that the disclosed systems can benefit from mass-production techniques.
Abstract:
A roller door system includes one or more sets of rollers configured to mount to a panel frame member on an upper end of a panel, and move through a complementary upper guide. A lower side of the panel frame can also be guided through one or more bottom tracks. These components, when coupled with the resin panel, can provide the ability to provide a smooth gliding motion for the resin panel door. In addition, the frame in which the panel is mounted can be configured with one or more components to accommodate the unique expansion and contraction properties of resin materials, and thus allow a stable, long term mounting solution. The upper guide and the lower track can also be configured with one or more components or mechanisms for pitch adjustment, as well as to adjust for uneven or irregular mounting surfaces.