Abstract:
A device and a method equalize a charge of series-connected individual cells of an energy accumulator with a DC/DC converter. The DC/DC converter draws energy from the energy accumulator or from another power source for charging an intermediate circuit capacitor whose voltage is inverted in a DC/AC converter and the alternating voltage is converted into an intermittent direct current by a rectifier via an AC bus and a coupling element. A switch is placed between the AC bus and each cell thereby enabling the cell to be coupled to the AC bus or disconnected therefrom.
Abstract:
Device for supplying power to a two-voltage vehicle electrical system equipped with safety-relevant components with an integrated starter-generator mechanically coupled with an internal combustion engine BKM, a double-layer capacitor DLC, a first and second energy accumulator B1, B2, with power being able to be supplied to safety-relevant components V1s via three safety switches X1 to X3, alternately by the starter-generator ISG, the double-layer capacitor DLC, the first or the second energy accumulator B1, B2.
Abstract:
A device and a method are provided for equalizing the charge of the capacitors belonging to a double layer capacitor. The device includes an individual transformer associated with each individual capacitor and a flyback transformer or a spool, from which the energy is transferred, via the individual transformers, to the individual transformer, by the respective low charge. Conclusions on the state of the double layer capacitor and the charge-equalizing switch are derived from the measured charging time and discharging time of the flyback transformer.
Abstract:
A device and a method are provided for equalizing the charge of the capacitors belonging to a double layer capacitor. The device includes an individual transformer associated with each individual capacitor and a flyback transformer or a spool, from which the energy is transferred, via the individual transformers, to the individual transformer, by the respective low charge. Conclusions on the state of the double layer capacitor and the charge-equalizing switch are derived from the measured charging time and discharging time of the flyback transformer.
Abstract:
A switching device for bi-directionally equalizing charge between energy accumulators, particularly between capacitive energy accumulators in a motor vehicle electric system, includes: an integrated starter generator; a first connection coupled to the integrated starter generator; a second connection coupled to an energy source; a controllable transfer gate having a first load current-conducting path connected between the first and second connection, and a controllable switching controller having a second load current-conducting path connected between the first and second connection in parallel to the first load current-conducting path. There is also provided a motor vehicle electric system with such a switching device, and the implementation and use of a switching controller in a transfer gate for such a switching device.
Abstract:
A device and a method equalize a charge of series-connected individual cells of an energy accumulator with a DC/DC converter. The DC/DC converter draws energy from the energy accumulator or from another power source for charging an intermediate circuit capacitor whose voltage is inverted in a DC/AC converter and the alternating voltage is converted into an intermittent direct current by a rectifier via an AC bus and a coupling element. A switch is placed between the AC bus and each cell thereby enabling the cell to be coupled to the AC bus or disconnected therefrom.
Abstract:
The invention relates to a method and a device for switching on a power switch (S1, S2) arranged between capacitive elements (C1, DLC, B36) a choke (L) being connected in parallel to the switching contacts of the still open power switch (S1, S2). Said choke enables compensating currents to flow between the elements (C1, B36, DLC) to be interconnected and to decay before the power switch (S1, S2) is then closed in a de-energized manner.
Abstract:
The invention relates to a method for switching a semi-conductor circuit breaker by means of which the resistance of the breaker gap of the semi-conductor circuit breaker is controlled by a control voltage (Vst), such that the power loss (Pist) from the circuit breaker does not exceed a predetermined setpoint (Psoll). The invention also relates to a device for carrying out said method wherein a transfer gate, which is controlled by a charge pump, is used as a semi-conductor circuit breaker.
Abstract:
The invention relates to an operating method for an electrical circuit with an energy store (5), made from several storage elements (C2-C5) and a charge-equalisation circuit (6), for charge equalisation between the individual storage elements (C2-C5) of the energy store (5), comprising the following steps: charging the energy store (5) and charge equalisation between the individual storage elements (C2-C5) of the energy store (5) by means of the charge equalisation circuit (6). The invention further relates to a corresponding electrical circuit for carrying out said operating method.
Abstract:
The invention relates to a method and a device for switching on a power switch (S1, S2) arranged between capacitive elements (C1, DLC, B36) a choke (L) being connected in parallel to the switching contacts of the still open power switch (S1, S2). Said choke enables compensating currents to flow between the elements (C1, B36, DLC) to be interconnected and to decay before the power switch (S1, S2) is then closed in a de-energized manner.